精英家教網 > 高中數學 > 題目詳情
8、設等差數列{an}的公差d不為0,a1=9d.若ak是a1與a2k的等比中項,則k=( 。
分析:由ak是a1與a2k的等比中項,知ak2=a1a2k,由此可知k2-2k-8=0,從而得到k=4或k=-2.
解答:解:因為ak是a1與a2k的等比中項,
則ak2=a1a2k,[9d+(k-1)d]2=9d•[9d+(2k-1)d],
又d≠0,則k2-2k-8=0,k=4或k=-2(舍去).
故選B.
點評:本題考查等差數列的性質和應用,解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設等差數列{an}的前n項和為Sn.若S2k=72,且ak+1=18-ak,則正整數k=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•山東)設等差數列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數列{an}的通項公式;
(2)設數列{bn}的前n項和為TnTn+
an+12n
(λ為常數).令cn=b2n(n∈N)求數列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數學 來源: 題型:

設等差數列{an}的前n項之和為Sn滿足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

設等差數列{an}的前n項和為Sn,已知(a4-1)3+2012(a4-1)=1(a2009-1)3+2012(a2009-1)=-1,則下列結論中正確的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設等差數列{an}的前n項和為Sn,若S9=81,S6=36,則S3=( 。

查看答案和解析>>

同步練習冊答案