(本小題共14分)

如圖,在四棱柱中,底面是正方形,側(cè)棱與底面垂直,點(diǎn)是正方形對角線的交點(diǎn),,點(diǎn),分別在上,且

(Ⅰ)求證:∥平面

(Ⅱ)若,求的長;

(Ⅲ)在(Ⅱ)的條件下,求二面角的余弦值.

 

【答案】

解:(Ⅰ)證明:取,連結(jié),

,,,,

∴四邊形為平行四邊形,

    在矩形中,,

    ∴四邊形為平行四邊形.

    ∴,

    ∵平面平面,

    ∴∥平面.       ————————4分

(Ⅱ)連結(jié),在正四棱柱中,

    平面,

    ∴,,

    ∴平面,

    ∴

    由已知,得平面

    ∴,

    在△與△中, ,

    ∴△∽△

    ∴.—————————9分

(Ⅲ)以為原點(diǎn),,,所在直線為,軸,建立空間直角坐標(biāo)系.

     

     

      由(Ⅱ)知為平面的一個(gè)法向量,

      設(shè)為平面的一個(gè)法向量,

      則  ,即  ,

,所以

      ∴,

      ∵二面角的平面角為銳角,

      ∴二面角的余弦值為.  —————————13分

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共14分)

      數(shù)列的前n項(xiàng)和為,點(diǎn)在直線

上.

   (I)求證:數(shù)列是等差數(shù)列;

   (II)若數(shù)列滿足,求數(shù)列的前n項(xiàng)和

   (III)設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共14分)

如圖,四棱錐的底面是正方形,,點(diǎn)E在棱PB上。

(Ⅰ)求證:平面;

(Ⅱ)當(dāng)EPB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (2009北京理)(本小題共14分)

已知雙曲線的離心率為,右準(zhǔn)線方程為

(Ⅰ)求雙曲線的方程;

(Ⅱ)設(shè)直線是圓上動點(diǎn)處的切線,與雙曲線

于不同的兩點(diǎn),證明的大小為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆度廣東省高二上學(xué)期11月月考理科數(shù)學(xué)試卷 題型:解答題

(本小題共14分)在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EFPB交PB于點(diǎn)F

⑴求證:PA//平面EDB

⑵求證:PB平面EFD

⑶求二面角C-PB-D的大小

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市崇文區(qū)高三下學(xué)期二模數(shù)學(xué)(文)試題 題型:解答題

(本小題共14分)

正方體的棱長為的交點(diǎn),的中點(diǎn).

(Ⅰ)求證:直線∥平面

(Ⅱ)求證:平面;

(Ⅲ)求三棱錐的體積.

 

查看答案和解析>>

同步練習(xí)冊答案