(本題15分)已知橢圓C的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到左、右焦點(diǎn)的距離之和為,離心率.

(1)求橢圓C的方程;

(2)過左焦點(diǎn)的直線與橢圓C交于點(diǎn),以為鄰邊作平行四邊形,求該平行四邊形對角線的長度的取值范圍.

(共15分) 解:(1)…………………4分

(2) ………6分   當(dāng)斜率不存在時(shí), ……8分

當(dāng)斜率存在時(shí), …………12分

的長度的取值范圍是………15分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題15分) 已知橢圓的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為,直線交橢圓于不同的兩點(diǎn),

(Ⅰ)求橢圓的方程;

(Ⅱ)若,且,求的值(點(diǎn)為坐標(biāo)原點(diǎn));

(Ⅲ)若坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題15分)已知橢圓的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為,直線交橢圓于不同的兩點(diǎn),

(Ⅰ)求橢圓的方程;

(Ⅱ)若,且,求的值(點(diǎn)為坐標(biāo)原點(diǎn));

(Ⅲ)若坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分15分)

已知橢圓C:+=1(ab>0)的離心率為,且經(jīng)過點(diǎn)P(1,).

(1)求橢圓C的方程;

(2)設(shè)F是橢圓C的右焦點(diǎn),M為橢圓上一點(diǎn),以M

圓心,MF為半徑作圓M.問點(diǎn)M橫坐標(biāo)滿足什么條

件時(shí),圓My軸有兩個(gè)交點(diǎn)?

(3)設(shè)圓My軸交于D、E兩點(diǎn),

求點(diǎn)D、E距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分15分)

已知橢圓C:+=1(ab>0)的離心率為,且經(jīng)過點(diǎn)P(1,).

(1)求橢圓C的方程;

(2)設(shè)F是橢圓C的右焦點(diǎn),M為橢圓上一點(diǎn),以M

圓心,MF為半徑作圓M.問點(diǎn)M橫坐標(biāo)滿足什么條

件時(shí),圓My軸有兩個(gè)交點(diǎn)?

(3)設(shè)圓My軸交于D、E兩點(diǎn),

求點(diǎn)D、E距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案