在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)的軌跡為,直線交于兩點(diǎn).
(1)寫出的方程;
(2)若點(diǎn)在第一象限,證明當(dāng)時,恒有.
(1);(2)詳見解析.

試題分析:(1)根據(jù)橢圓的定義,可判斷點(diǎn)的軌跡為橢圓,再根據(jù)橢圓的基本量,容易寫出橢圓的方程,求曲線的方程一般可設(shè)動點(diǎn)坐標(biāo)為,然后去探求動點(diǎn)坐標(biāo)滿足的方程,但如果根據(jù)特殊曲線的定義,先行判斷出曲線的形狀(如橢圓,圓,拋物線等),則可直接寫出其方程;(2)一般地,涉及直線與二次曲線相交的問題,則可聯(lián)立方程組,或解出交點(diǎn)坐標(biāo),或設(shè)而不求,利用一元二次方程根與系數(shù)的關(guān)系建立關(guān)系求出參數(shù)的值(取值范圍),本題可設(shè),根據(jù)兩點(diǎn)坐標(biāo)滿足的方程,去判斷的符號.
試題解析:(1)設(shè),由橢圓定義可知,點(diǎn)的軌跡是以為焦點(diǎn),長半軸為2的橢圓,它的短半軸,      2分
故曲線的方程為.     5分
(2)證明:設(shè),其坐標(biāo)滿足消去并整理,得
                       7分
.           9分
.                                     11分
因為在第一象限,故.
,從而.
,故,
即在題設(shè)條件下,恒有.                                                        13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,直線與以原點(diǎn)為圓心、橢圓的短半軸長為半徑的圓相切.

(1)求橢圓的方程;
(2)如圖,、是橢圓的頂點(diǎn),是橢圓上除頂點(diǎn)外的任意點(diǎn),直線軸于點(diǎn),直線于點(diǎn),設(shè)的斜率為的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
(1)若橢圓的長軸長為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍;
(3)過原點(diǎn)任意作兩條互相垂直的直線與橢圓相交于四點(diǎn),設(shè)原點(diǎn)到四邊形的一邊距離為,試求滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的兩個焦點(diǎn)和上下兩個頂點(diǎn)是一個邊長為2且∠F1B1F2的菱形的四個頂點(diǎn).
(1)求橢圓的方程;
(2)過右焦點(diǎn)F2 ,斜率為)的直線與橢圓相交于兩點(diǎn),A為橢圓的右頂點(diǎn),直線、分別交直線于點(diǎn)、,線段的中點(diǎn)為,記直線的斜率為.求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若處取得極值,求的值;
(2)求的單調(diào)區(qū)間;
(3)若,函數(shù),若對于,總存在使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的左、右焦點(diǎn)分別為,且橢圓過點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)作不與軸垂直的直線交該橢圓于兩點(diǎn),為橢圓的左頂點(diǎn),試判斷的大小是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓(a>b>0)的離心率為,過右焦點(diǎn)且斜率為(k>0)的直線于相交于兩點(diǎn),若,則 =(  )
A.1B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是橢圓在第一象限上的動點(diǎn),是橢圓的焦點(diǎn),的平分線上的一點(diǎn),且,則的取值范圍是         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的左、右焦點(diǎn)分別為F1、F2,P是橢圓上的一點(diǎn),,且,垂足為,若四邊形為平行四邊形,則橢圓的離心率的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案