(12分) 如圖,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中點(diǎn),求證:(1)  FD∥平面ABC;  (2)  AF⊥平面EDB.
∵ F、M分別是BE、BA的中點(diǎn)  ∴ FM∥EA, FM=EA
∵ EA、CD都垂直于平面ABC ∴ CD∥EA∴ CD∥FM
又 DC="a, " ∴  FM="DC " ∴四邊形FMCD是平行四邊形
∴ FD∥MC
FD∥平面ABC
(2)      因M是AB的中點(diǎn),△ABC是正三角形,所以CM⊥AB
又  CM⊥AE,所以CM⊥面EAB, CM⊥AF, FD⊥AF,
因F是BE的中點(diǎn), EA=AB所以AF⊥EB.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)在平行六面體中,的中點(diǎn),.
(1)化簡:;
(2) 設(shè),,若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖所示,四邊形ABCD為矩形,BC⊥平面ABE,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE.
(2)設(shè)點(diǎn)M為線段AB的中點(diǎn),點(diǎn)N為線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,垂直于矩形所在的平面,分別是的中點(diǎn).
(I)求證:平面 ;
(Ⅱ)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

m和n是分別在兩個互相垂直的面α、β內(nèi)的兩條直線,α與β交于l,m和n與l既不垂直,也不平行,那么m和n的位置關(guān)系是         (  )
A.可能垂直,但不可能平行B.可能平行,但不可能垂直
C.可能垂直,也可能平行D.既不可能垂直,也不可能平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線是異面直線,直線分別與都相交,則直線的位置關(guān)系( )
A.可能是平行直線B.一定是異面直線C.可能是相交直線D.平行、相交、異面直線都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用一個邊長為的正方形硬紙,按各邊中點(diǎn)垂直折起四個小三角形,做成一個蛋巢,半徑為1雞蛋(視為球體)放入 其 中,則雞蛋中心(球心)與蛋巢底面的距離為 (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在長方形中,設(shè)一條對角線與其一頂點(diǎn)出發(fā)的兩條邊所成的角分別是α,β,則有cos2α+cos2β=1;類比到空間,在長方體中,一條對角線與從其一頂點(diǎn)出發(fā)的三條棱所成的角分別為α,β,γ,則正確的式子是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本小題滿分12分)
如圖,正方形ABCD、ABEF的邊長都是1,而且平面ABCD、ABEF互相垂直,點(diǎn)M在AC上移動,點(diǎn)N在BF上移動,若CM=BN=a(0<a<).
(1)求MN的長;
(2)當(dāng)a為何值時,MN的長最。
(3)當(dāng)MN的長最小時,求面MNA與面MNB所成的二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案