【題目】在△ABC中, ,O為平面內(nèi)一點(diǎn),且 ,M為劣弧 上一動(dòng)點(diǎn),且 ,則p+q的最大值為 .
【答案】2
【解析】解:∵ ,
∴O是△ABC的外心.
∵∠A= ,∴∠BOC= ,
設(shè)OA=1,A(1,0),B(﹣1,0),C( , ),
則 =p =(﹣p+ , ),
設(shè)M(cosα,sinα),則 ≤α≤π,
∴ ,即 ,
∴p+q= sinα﹣cosα=2sin(α﹣ ),
∵ ≤α≤π,∴ ≤ ≤ ,
∴當(dāng) = 時(shí),p+q取得最大值2.
故答案為:2.
由 | | = | | = | | ,可知O是△ABC的外心,以O(shè)為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,依據(jù)題意得出各點(diǎn)坐標(biāo),表示出p,q,結(jié)合三角恒等變換可得最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中.以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系已知曲線C:pcos2θ=2asinθ(a>0)過點(diǎn)P(﹣4,﹣2)的直線l的參數(shù)方程為 (t為參數(shù))直線l與曲線C分別交于點(diǎn)M,N.
(1)寫出C的直角坐標(biāo)方程和l的普通方程;
(2)若丨PM丨,丨MN丨,丨PN丨成等比數(shù)列,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,右焦點(diǎn)為F,右頂點(diǎn)為E,P為直線x= a上的任意一點(diǎn),且( + ) =2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過F垂直于x軸的直線AB與橢圓交于A,B兩點(diǎn)(點(diǎn)A在第一象限),動(dòng)直線l與橢圓C交于M,N兩點(diǎn),且M,N位于直線AB的兩側(cè),若始終保持∠MAB=∠NAB,求證:直線MN的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋時(shí)期的數(shù)學(xué)家秦九韶在他的著作《數(shù)書九章》中提出了計(jì)算多項(xiàng)式f(x)=anxn+an﹣1xn﹣1+…+a1x+a0的值的秦九韶算法,即將f(x)改寫成如下形式:f(x)=(…((anx+an﹣1)x+an﹣2)x+…+a1)x+a0 , 首先計(jì)算最內(nèi)層一次多項(xiàng)式的值,然后由內(nèi)向外逐層計(jì)算一次多項(xiàng)式的值,這種算法至今仍是比較先進(jìn)的算法,將秦九韶算法用程序框圖表示如圖,則在空白的執(zhí)行框內(nèi)應(yīng)填入( 。
A.v=vx+ai
B.v=v(x+ai)
C.v=aix+v
D.v=ai(x+v)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)證明:k∈R,直線y=g(x)都不是曲線y=f(x)的切線;
(2)若x∈[e,e2],使得f(x)≤g(x)+ 成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=xex﹣ax(a∈R,a為常數(shù)),e為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)f(x)的任意一條切線都不與y軸垂直,求a的取值范圍;
(2)當(dāng)a=2時(shí),求使得f(x)+k>0成立的最小正整數(shù)k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}是公差為d(d≠0)的等差數(shù)列,Sn為其前n項(xiàng)和,a1 , a2 , a5成等比數(shù)列.
(Ⅰ)證明S1 , S3 , S9成等比數(shù)列;
(Ⅱ)設(shè)a1=1,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合U={1,2,…,100},TU.對(duì)數(shù)列{an}(n∈N*),規(guī)定:
①若T=,則ST=0;
②若T={n1 , n2 , …,nk},則ST=a +a +…+a .
例如:當(dāng)an=2n,T={1,3,5}時(shí),ST=a1+a3+a5=2+6+10=18.
已知等比數(shù)列{an}(n∈N*),a1=1,且當(dāng)T={2,3}時(shí),ST=12,求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】所謂正三棱錐,指的是底面為正三角形,頂點(diǎn)在底面上的射影為底面三角形中心的三棱錐,在正三棱錐 中, 是 的中點(diǎn),且 ,底面邊長 ,則正三棱錐 的體積為 , 其外接球的表面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com