14.設(shè)復(fù)數(shù)z=lg(m2-2m-2)+(m2+3m+2)i,試問(wèn)實(shí)數(shù)m取何值時(shí),復(fù)數(shù)z
(1)為純虛數(shù)
(2)為實(shí)數(shù)
(3)對(duì)應(yīng)的點(diǎn)在復(fù)平面的第四象限.

分析 (1)由實(shí)部lg(m2-2m-2)=0,且虛部(m2+3m+2)≠0,求得m的值即可;
(2)由復(fù)數(shù)的虛部m2+3m+2=0 且m2-2m-2>0時(shí),求得m的值即可;
(3)由實(shí)部lg(m2-2m-2)>0,且虛部(m2+3m+2)<0時(shí),求得m值即可.

解答 解:(1)若z是純虛數(shù),
則$\left\{\begin{array}{l}{{m}^{2}-2m-2=1}\\{{m}^{2}+3m+2≠0}\end{array}\right.$,
解得m=3.
故m=3時(shí),z為純虛數(shù);
(2)若z是實(shí)數(shù),
則$\left\{\begin{array}{l}{{m}^{2}-2m-2>0}\\{{m}^{2}+3m+2=0}\end{array}\right.$,
解得m=-2或-1.
故m=-2或-1時(shí),z是實(shí)數(shù);
(3)若z對(duì)應(yīng)的點(diǎn)在復(fù)平面的第四象限,
則lg(m2-2m-2)>0,且(m2+3m+2)<0,
解得 m<-1或m>3,
故當(dāng)m<-1或m>3時(shí),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于復(fù)平面的第四象限.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的基本概念,一元二次不等式、對(duì)數(shù)不等式的解法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,6)
(Ⅰ)求$\overrightarrow{a}$與$\overrightarrow$的夾角θ;
(Ⅱ)若$\overrightarrow{c}$與$\overrightarrow$共線,且$\overrightarrow{a}$-$\overrightarrow{c}$與$\overrightarrow{a}$垂直,求$\overrightarrow{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若x>0,y>0且2x+y=3,則$\frac{1}{x}+\frac{1}{y}$的最小值是$\frac{1}{3}(3+2\sqrt{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知等差數(shù)列{an}的公差d≠0,首項(xiàng)a1=d,數(shù)列{an2}的前n項(xiàng)和為Sn,等比數(shù)列{bn}是公比q小于1的正弦有理數(shù)列,首項(xiàng)b1=d2,其前n項(xiàng)和為T(mén)n,若$\frac{{S}_{3}}{{T}_{3}}$是正整數(shù),則q的可能取值為( 。
A.$\frac{1}{7}$B.$\frac{3}{7}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.i為虛數(shù)單位,則${(\frac{1+i}{1-i})^{2007}}$=( 。
A.-iB.-1C.iD.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.關(guān)于函數(shù)$f(x)=4sin(2x+\frac{π}{3})(x∈R)$有下列命題,其中正確的是( 。
①y=f(x)的表達(dá)式可改寫(xiě)為$y=4cos(2x-\frac{π}{6})$;
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關(guān)于點(diǎn)$(-\frac{π}{6},0)$對(duì)稱;
④y=f(x)的圖象關(guān)于直線x=$\frac{5π}{6}$對(duì)稱.
A.①②B.③④C.D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖所示,兩函數(shù)y1=k1x+b和y2=k2x的圖象相交于點(diǎn)(-1,-2),則關(guān)于x的不等式 k1x+b>k2x的解集為( 。
A.x>-1B.x<-1C.x<-2D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若函數(shù)f(x)=tlnx與函數(shù)g(x)=x2-1在點(diǎn)(1,0)處有共同的切線l,則t的值是( 。
A.$t=\frac{1}{2}$B.t=1C.t=2D.t=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.?dāng)?shù)列{an}滿足${a_n}=\frac{1}{{\sqrt{n+1}+\sqrt{n}}}$,記其前n項(xiàng)和為Sn,若Sn=8,則項(xiàng)數(shù)n的值為80.

查看答案和解析>>

同步練習(xí)冊(cè)答案