【題目】已知定點(diǎn),,動(dòng)點(diǎn)P為平面上一個(gè)動(dòng)點(diǎn),且直線(xiàn)SPTP的斜率之積為.

1)求動(dòng)點(diǎn)P的軌跡E的方程;

2)設(shè)點(diǎn)B為軌跡Ey軸正半軸的交點(diǎn),是否存在斜率為直線(xiàn)l,使得l交軌跡EM,N兩點(diǎn),且恰是的重心?若存在,求l的方程;若不存在,說(shuō)明理由.

【答案】12)不存在,詳見(jiàn)解析

【解析】

1)設(shè),由結(jié)合兩點(diǎn)間斜率計(jì)算公式,整理化簡(jiǎn)即可;

2)根據(jù)題意,設(shè)直線(xiàn)的方程為,,聯(lián)立直線(xiàn)和橢圓的方程構(gòu)成方程組,將韋達(dá)定理和相結(jié)合,求出的值,但不滿(mǎn)足,進(jìn)而可得出結(jié)果.

1)設(shè),由已知有,

整理得動(dòng)點(diǎn)的軌跡的方程為

2)由(1)知,的方程為,所以

設(shè)存在直線(xiàn)適合題意,并設(shè)的方程為,.

,得,

,得,.

因?yàn)辄c(diǎn)的重心,所以,

,解得

當(dāng)時(shí),不滿(mǎn)足,

所以不存在直線(xiàn),使得的重心.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某品牌布娃娃做促銷(xiāo)活動(dòng):已知有50個(gè)布娃娃,其中一些布娃娃里面有獎(jiǎng)品,參與者可以先在50個(gè)布娃娃中購(gòu)買(mǎi)5個(gè),看完5個(gè)布娃娃里面的結(jié)果再?zèng)Q定是否將剩下的布娃娃全部購(gòu)買(mǎi),設(shè)每個(gè)布娃娃有獎(jiǎng)品的概率為,且各個(gè)布娃娃是否有獎(jiǎng)品相互獨(dú)立.

1)記5個(gè)布娃娃中有1個(gè)有獎(jiǎng)品的概率為,當(dāng)時(shí),的最大值,求;

2)假如這5個(gè)布娃娃中恰有1個(gè)有獎(jiǎng)品,以上問(wèn)中的作為p的值.已知每次購(gòu)買(mǎi)布娃娃需要2元,若有中獎(jiǎng),則中獎(jiǎng)?wù)呙看慰傻锚?jiǎng)金15.以最終獎(jiǎng)金的期望作為決策依據(jù),是否該買(mǎi)下剩下所有的45個(gè)布娃娃;

3)若已知50件布娃娃中有10個(gè)布娃娃有獎(jiǎng)品,從這堆布娃娃中任意購(gòu)買(mǎi)5個(gè),若抽到k個(gè)有獎(jiǎng)品可能性最大,求k的值.k為正整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有6名選手參加才藝比賽,其中男、女選手各3名,且3名男選手分別表演歌唱、舞蹈和魔術(shù),3名女選手分別表演歌唱、舞蹈和魔術(shù),若要求相鄰出場(chǎng)的選手性別不同且表演的節(jié)目不同,則不同的出場(chǎng)方式的種數(shù)為(

A.6B.12C.18D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx)在定義域(0,+∞)上是單調(diào)函數(shù),且x∈(0,+∞),ffx)﹣ex+x)=e.若不等式2fx)﹣f′(x)﹣3ax對(duì)x∈(0,+∞)恒成立,則a的取值范圍是(

A.(﹣∞,e2]B.(﹣∞,e1]C.(﹣∞,2e3]D.(﹣∞,2e1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)極值點(diǎn)的個(gè)數(shù);

2)當(dāng)時(shí),不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形是等腰梯形,,,三角形是等邊三角形,平面平面,E,F分別為,的中點(diǎn).

1)求證:平面平面

2)若,求直線(xiàn)與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)處取得極大值或極小值,則稱(chēng)為函數(shù)的極值點(diǎn)設(shè)函數(shù)

(1)若函數(shù)上無(wú)極值點(diǎn),求的取值范圍;

(2)求證:對(duì)任意實(shí)數(shù),在函數(shù)的圖象上總存在兩條切線(xiàn)相互平行;

(3)當(dāng)時(shí),若函數(shù)的圖象上存在的兩條平行切線(xiàn)之間的距離為4,問(wèn);這樣的平行切線(xiàn)共有幾組?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系xOy中,拋物線(xiàn)E頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求拋物線(xiàn)E的極坐標(biāo)方程;

(Ⅱ)過(guò)點(diǎn)傾斜角為的直線(xiàn)lEM,N兩點(diǎn),若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校名學(xué)生參加軍事冬令營(yíng)活動(dòng),活動(dòng)期間各自扮演一名角色進(jìn)行分組游戲,角色按級(jí)別從小到大共種,分別為士兵、排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級(jí)別連續(xù)的個(gè)不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進(jìn)行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案