【題目】已知橢圓C:()的左右焦點(diǎn)分別為,.橢圓C上任一點(diǎn)P都滿足,并且該橢圓過(guò)點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),過(guò)點(diǎn)A作x軸的垂線,交該橢圓于點(diǎn)M,求證:三點(diǎn)共線.
【答案】(Ⅰ)(Ⅱ)見(jiàn)解析
【解析】
(Ⅰ)根據(jù)求出,再將點(diǎn)代入橢圓方程得到,即可求出結(jié)果;(Ⅱ)由(Ⅰ)確定的坐標(biāo),設(shè),,,以及直線的方程,聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理,求出直線的方程,即可證明結(jié)論成立.
設(shè)出
(Ⅰ)依題意,,故.
將代入中,解得,故橢圓: .…
(Ⅱ)由題知直線的斜率必存在,設(shè)的方程為 .……………
點(diǎn),,,聯(lián)立得.
即
,, …
由題可得直線方程為. …
又,.
直線方程為.
令,整理得
,即直線過(guò)點(diǎn)(1,0).
又橢圓的左焦點(diǎn)坐標(biāo)為,∴三點(diǎn),,在同一直線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓過(guò)點(diǎn),離心率為,左右焦點(diǎn)分別為,過(guò)點(diǎn)的直線交橢圓于兩點(diǎn)。
(1)求橢圓的方程;
(2)當(dāng)的面積為時(shí),求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某媒體對(duì)“男女延遲退休”這一公眾關(guān)注的問(wèn)題進(jìn)行了民意調(diào)查,下表是在某單位調(diào)查后得到的數(shù)據(jù)(人數(shù)):
贊同 | 反對(duì) | 合計(jì) | |
男 | 5 | 6 | 11 |
女 | 11 | 3 | 14 |
合計(jì) | 16 | 9 | 25 |
(1)能否有90%以上的把握認(rèn)為對(duì)這一問(wèn)題的看法與性別有關(guān)?
(2)進(jìn)一步調(diào)查:
①?gòu)馁澩?/span>“男女延遲退休”的人中選出人進(jìn)行陳述發(fā)言,求事件“男士和女士各至少有人發(fā)言”的概率;
②從反對(duì)“男女延遲退休”的人中選出人進(jìn)行座談,設(shè)選出的人中女士人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A過(guò)定點(diǎn),且與定直線相切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)若是軌跡的動(dòng)弦,且過(guò), 分別以、為切點(diǎn)作軌跡的切線,設(shè)兩切線交點(diǎn)為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為的正方形,平面PAC⊥底面ABCD,PA=PC=
(1)求證:PB=PD;
(2)若點(diǎn)M,N分別是棱PA,PC的中點(diǎn),平面DMN與棱PB的交點(diǎn)Q,則在線段BC上是否存在一點(diǎn)H,使得DQ⊥PH,若存在,求BH的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究所計(jì)劃利用“神七”宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品A、B,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來(lái)決定具體安排,通過(guò)調(diào)查,有關(guān)數(shù)據(jù)如表:
產(chǎn)品A(件) | 產(chǎn)品B(件) | ||
研制成本與塔載 | 20 | 30 | 計(jì)劃最大資 |
產(chǎn)品重量(千克/件) | 10 | 5 | 最大搭載 |
預(yù)計(jì)收益(萬(wàn)元/件) | 80 | 60 |
試問(wèn):如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開(kāi)始,不分文理科;2020年高考總成績(jī)由語(yǔ)數(shù)外三門(mén)統(tǒng)考科目和物理、化學(xué)等六門(mén)選考科目組成,將每門(mén)選考科目的考生原始成績(jī)從高到低劃分為、、、共8個(gè)等級(jí),參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%,選考科目成績(jī)計(jì)入考生總成績(jī)時(shí),將A至E等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到、、、、、、,八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).某市高一學(xué)生共6000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六門(mén)選考科目進(jìn)行測(cè)試,其中化學(xué)考試原始成績(jī)大致服從正態(tài)分布.
(1)求該市化學(xué)原始成績(jī)?cè)趨^(qū)間的人數(shù);
(2)以各等級(jí)人數(shù)所占比例作為各分?jǐn)?shù)區(qū)間發(fā)生的概率,按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級(jí)成績(jī)?cè)趨^(qū)間的人數(shù),求.
(附:若隨機(jī)變量,則,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了鼓勵(lì)運(yùn)動(dòng)提高所有用戶的身體素質(zhì),特推出一款運(yùn)動(dòng)計(jì)步數(shù)的軟件,所有用戶都可以通過(guò)每天累計(jì)的步數(shù)瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數(shù)和性別是否有關(guān)”,統(tǒng)計(jì)了2019年1月份所有用戶的日平均步數(shù),規(guī)定日平均步數(shù)不少于8000的為“運(yùn)動(dòng)達(dá)人”,步數(shù)在8000以下的為“非運(yùn)動(dòng)達(dá)人”,采用按性別分層抽樣的方式抽取了100個(gè)用戶,得到如下列聯(lián)表:
運(yùn)動(dòng)達(dá)人 | 非運(yùn)動(dòng)達(dá)人 | 總計(jì) | |
男 | 35 | 60 | |
女 | 26 | ||
總計(jì) | 100 |
(1)(i)將列聯(lián)表補(bǔ)充完整;
(ii)據(jù)此列聯(lián)表判斷,能否有的把握認(rèn)為“日平均走步數(shù)和性別是否有關(guān)”?
(2)從樣本中的運(yùn)動(dòng)達(dá)人中抽取7人參加“幸運(yùn)抽獎(jiǎng)”活動(dòng),通過(guò)抽獎(jiǎng)共產(chǎn)生2位幸運(yùn)用戶,求這2位幸運(yùn)用戶恰好男用戶和女用戶各一位的概率.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“回文數(shù)”是指從左到右與從右到左讀都一樣的正整數(shù),如22,121,3553等.顯然2位“回文數(shù)”共9個(gè):11,22,33,…,99.現(xiàn)從9個(gè)不同2位“回文數(shù)”中任取1個(gè)乘以4,其結(jié)果記為X;從9個(gè)不同2位“回文數(shù)”中任取2個(gè)相加,其結(jié)果記為Y.
(1)求X為“回文數(shù)”的概率;
(2)設(shè)隨機(jī)變量表示X,Y兩數(shù)中“回文數(shù)”的個(gè)數(shù),求的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com