已知雙曲線C與橢圓1有共同的焦點F1F2,且離心率互為倒數(shù).若雙曲線右支上一點P到右焦點F2的距離為4,則PF2的中點M到坐標原點O的距離等于(  )

A3 B4 C2 D1

 

A

【解析】由橢圓的標準方程,可得橢圓的半焦距c2,故橢圓的離心率e1,則雙曲線的離心率e22.因為橢圓和雙曲線有共同的焦點,所以雙曲線的半焦距也為c2.設雙曲線C的方程為1(a>0,b>0),則有a1,b2,所以雙曲線的標準方程為x21.因為點P在雙曲線的右支上,則由雙曲線的定義,可得|PF1||PF2|2a2,又|PF2|4,所以|PF1|6.因為坐標原點OF1F2的中點,MPF2的中點.

所以|MO||PF1|3.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練9練習卷(解析版) 題型:解答題

已知公差不為零的等差數(shù)列{an}的前4項和為10,且a2,a3a7成等比數(shù)列.

(1)求通項公式an;

(2)bn2an,求數(shù)列{bn}的前n項和Sn.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練17練習卷(解析版) 題型:解答題

為了解某班學生喜愛打籃球是否與性別有關,對本班48人進行了問卷調(diào)查得到了如下的2×2列聯(lián)表:

 

喜愛打籃球

不喜愛打籃球

合計

男生

 

6

 

女生

10

 

 

合計

 

 

48

已知在全班48人中隨機抽取1人,抽到喜愛打籃球的學生的概率為.

(1)請將上面的2×2列聯(lián)表補充完整(不用寫計算過程);

(2)你是否有95%的把握認為喜愛打籃球與性別有關?說明你的理由;

(3)現(xiàn)從女生中抽取2人進一步調(diào)查,設其中喜愛打籃球的女生人數(shù)為X,求X的分布列與數(shù)學期望.

下面的臨界值表供參考:

P(χ2x0)

P(K2k0)

0.10

0.05

0.010

0.005

x0(k0)

2.706

3.841

6.635

7.879

 

(參考公式)χ2,其中nn11n12n21n22K2,其中nabcd)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練16練習卷(解析版) 題型:選擇題

過拋物線y22px(p>0)的焦點F且傾斜角為60°的直線l與拋物線分別交于A,B兩點,則的值等于(  )

A5 B4 C3 D2

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練15練習卷(解析版) 題型:解答題

F1,F2分別是橢圓Ex21(0<b<1)的左、右焦點,過F1的直線lE相交于AB兩點,且|AF2||AB|,|BF2|成等差數(shù)列.

(1)|AB|

(2)若直線l的斜率為1,求b的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練14練習卷(解析版) 題型:解答題

在平面直角坐標系xOy中,曲線yx26x1與坐標軸的交點都在圓C上.

(1)求圓C的方程;

(2)若圓C與直線xya0交于A,B兩點,且OAOB,求a的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練14練習卷(解析版) 題型:選擇題

已知圓(xa)2(yb)2r2的圓心為拋物線y24x的焦點,且與直線3x4y20相切,則該圓的方程為(  )

A(x1)2y2 Bx2(y1)2

C(x1)2y21 Dx2(y1)21

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練12練習卷(解析版) 題型:填空題

如圖,在長方形ABCD中,AB2,BC1,EDC的中點,F為線段EC上一動點.現(xiàn)將AFD沿AF折起,使平面ABD平面ABC.在平面ABD內(nèi)過點DDKAB,K為垂足.設AKt,則t的取值范圍是________

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:選擇題

已知直線yk(xm)與拋物線y22px(p>0)交于AB兩點,且OAOBODAB于點D.若動點D的坐標滿足方程x2y24x0,則m等于(  )

A1 B2 C3 D4

 

查看答案和解析>>

同步練習冊答案