【題目】改革開放以來,中國(guó)快遞行業(yè)持續(xù)快速發(fā)展,快遞業(yè)務(wù)量從上世紀(jì)年代的萬(wàn)件提升到2018年的億件,快遞行業(yè)的發(fā)展也給我們的生活帶來了很大便利.已知某市某快遞點(diǎn)的收費(fèi)標(biāo)準(zhǔn)為:首重(重量小于等于)收費(fèi)元,續(xù)重(不足). (:一個(gè)包裹重量為則需支付首付元,續(xù)重元,一共元快遞費(fèi)用)

1)若你有三件禮物重量分別為,要將三個(gè)禮物分成兩個(gè)包裹寄出(:合為一個(gè)包裹,一個(gè)包裹),那么如何分配禮物,使得你花費(fèi)的快遞費(fèi)最少?

2)對(duì)該快遞點(diǎn)近天的每日攬包裹數(shù)(單位:)進(jìn)行統(tǒng)計(jì),得到的日攬包裹數(shù)分別為件,件,件,件,件,那么從這天中隨機(jī)抽出天,求這天的日攬包裹數(shù)均超過件的概率.

【答案】1一個(gè)包裹,一個(gè)包裹時(shí)花費(fèi)的運(yùn)費(fèi)最少,為元;(2.

【解析】

1)分一個(gè)包裹,一個(gè)包裹,一個(gè)包裹,一個(gè)包裹,一個(gè)包裹,一個(gè)包裹三種情況討論;

2)采用枚舉法,枚舉出基本事件總數(shù)以及事件“天的日攬包裹數(shù)均超過件”所包含的基本事件個(gè)數(shù),再利用古典概型的概率計(jì)算公式計(jì)算即可.

:一個(gè)包裹,一個(gè)包裹時(shí),需花費(fèi)(),

一個(gè)包裹,一個(gè)包裹時(shí),需花費(fèi)(),

一個(gè)包裹,一個(gè)包裹時(shí),需花費(fèi)(),

綜上,一個(gè)包裹,一個(gè)包裹時(shí)花費(fèi)的運(yùn)費(fèi)最少,為.

天中有天的日攬包裹數(shù)超過件,

記這三天為其余兩天為

天中隨機(jī)抽出天的所有基本事件如下:

,

一共種,

天的日攬包裹數(shù)均超過件的基本事件有,一共種,

所以從這天中隨機(jī)抽出天,

天的日攬件數(shù)均超過件的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,四邊形ABCD為平行四邊形,BDDC,△PCD為正三角形,平面PCD⊥平面ABCD,EPC的中點(diǎn).

1)證明:AP∥平面EBD

2)證明:BEPC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與拋物線有共同的焦點(diǎn),且離心率為,設(shè)分別是為橢圓的上下頂點(diǎn)

1)求橢圓的方程;

2)過點(diǎn)軸不垂直的直線與橢圓交于不同的兩點(diǎn),當(dāng)弦的中點(diǎn)落在四邊形內(nèi)(含邊界)時(shí),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)P4,0)的動(dòng)直線與拋物線C交于點(diǎn)A,B,且(點(diǎn)O為坐標(biāo)原點(diǎn)).

1)求拋物線C的方程;

2)當(dāng)直線AB變動(dòng)時(shí),x軸上是否存在點(diǎn)Q使得點(diǎn)P到直線AQ,BQ的距離相等,若存在,求出點(diǎn)Q坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統(tǒng)計(jì)如圖中的條形圖,已知年的就醫(yī)費(fèi)用比年的就醫(yī)費(fèi)用增加了元,則該人年的儲(chǔ)畜費(fèi)用為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)判斷并說明函數(shù)的零點(diǎn)個(gè)數(shù).若函數(shù)所有零點(diǎn)均在區(qū)間內(nèi),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓臺(tái)的軸截面為等腰梯形圓臺(tái)的側(cè)面積為.若點(diǎn)分別為圓上的動(dòng)點(diǎn),且點(diǎn)在平面的同側(cè).

1)求證:;

2)若,則當(dāng)三棱錐的體積取最大值時(shí),求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄AQ經(jīng)過定點(diǎn),且與定直線相切(其中a為常數(shù),且.記動(dòng)圓圓心Q的軌跡為曲線C.

1)求C的方程,并說明C是什么曲線?

2)設(shè)點(diǎn)P的坐標(biāo)為,過點(diǎn)P作曲線C的切線,切點(diǎn)為A,若過點(diǎn)P的直線m與曲線C交于M,N兩點(diǎn),則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐ABCD中,點(diǎn)EBD上,EAEBECED,BDCD,△ACD為正三角形,點(diǎn)M,N分別在AE,CD上運(yùn)動(dòng)(不含端點(diǎn)),且AMCN,則當(dāng)四面體CEMN的體積取得最大值時(shí),三棱錐ABCD的外接球的表面積為_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案