【題目】數(shù)列{an}中,已知對任意n∈N* , a1+a2+a3+…+an=3n﹣1,則a12+a22+a32+…+an2等于(
A.(3n﹣1)2
B.
C.9n﹣1
D.

【答案】B
【解析】解:∵a1+a2+a3+…+an=3n﹣1,① ∴a1+a2+a3+…+an+1=3n+1﹣1,②
②﹣①得:an+1=3n+1﹣3n=2×3n ,
∴an=2×3n1
當n=1時,a1=31﹣1=2,符合上式,
∴an=2×3n1
=4×9n1 ,
=4, =9,
∴{ }是以4為首項,9為公比的等比數(shù)列,
∴a12+a22+a32+…+an2= = (9n﹣1).
故選B.
由a1+a2+a3+…+an=3n﹣1,可求得an , 從而可知 ,利用等比數(shù)列的求和公式即可求得答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為 ,且過點
(1)求橢圓的標準方程;
(2)四邊形ABCD的頂點在橢圓上,且對角線AC、BD過原點O,若 . (i) 求 的最值;
(ii) 求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)α∈(0, ),滿足 sinα+cosα=
(1)求cos(α+ )的值;
(2)求cos(2α+ π)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C 的離心率為 ,點 在橢圓C上.直線l過點(1,1),且與橢圓C交于A,B兩點,線段AB的中點為M. (I)求橢圓C的方程;
(Ⅱ)點O為坐標原點,延長線段OM與橢圓C交于點P,四邊形OAPB能否為平行四邊形?若能,求出此時直線l的方程,若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC是一個面積較大的三角形,點P是△ABC所在平面內(nèi)一點且 + +2 = ,現(xiàn)將3000粒黃豆隨機拋在△ABC內(nèi),則落在△PBC內(nèi)的黃豆數(shù)大約是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率e= ,左頂點、上頂點分別為A,B,△OAB的面積為3(點O為坐標原點).
(1)求橢圓C的方程;
(2)若P、Q分別是AB、橢圓C上的動點,且 (λ<0),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,D、E分別是△ABC的三等分點,設(shè) = , = ,∠BAC=
(1)用 , 分別表示 , ;
(2)若 =15,| |=3 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近于圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的(四舍五入精確到小數(shù)點后兩位)的值為( )(參考數(shù)據(jù):sin15°=0.2588,sin75°=0.1305)
A.3.10
B.3.11
C.3.12
D.3.13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲得利潤分別為4萬元、3萬元,則該企業(yè)每天可獲得最大利潤為萬元

原料限額

A(噸)

2

5

10

B(噸)

6

3

18

查看答案和解析>>

同步練習冊答案