(2012•棗莊二模)已知點Q(0,2
2
)及拋物線
y
2
 
=4x
上一動點P(x,y),則x+|PQ|的最小值是
2
2
分析:設P到準線的距離為d,利用拋物線的定義得出:y0+|PQ|=d-1+|PQ|=|PF|+|PQ|-1最后利用當且僅當F、Q、P共線時取最小值,從而得出故x+|PQ|的最小值是2.
解答:解:用拋物線的定義:
拋物線焦點F(1,0),準線 x=-1,設P到準線的距離為d
x+|PQ|=d-1+|PQ|=|PF|+|PQ|-1≥|FQ|-1=2
(當且僅當F、Q、P共線時取等號)
故x+|PQ|的最小值是2.
故答案為:2.
點評:本小題主要考查拋物線的定義、不等式的性質等基礎知識,考考查數(shù)形結合思想、化歸與轉化思想,解答關鍵是合理利用定義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•棗莊二模)已知定義在R上的函數(shù)f(x)滿足f(x+
3
2
)=-f(x)
,且函數(shù)y=f(x-
3
4
)
為奇函數(shù),給出三個結論:
①f(x)是周期函數(shù);②f(x)是圖象關于點(-
3
4
,0)對稱;③f(x)是偶函數(shù).其中正確結論的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•棗莊二模)設等比數(shù)列{an}的前n項之和為Sn,若8a2+a5=0,則
S5
S3
的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•棗莊二模)α是第四象限角,cosα=
3
5
,則cos(α-
π
4
)
=
-
2
10
-
2
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•棗莊二模)已知i為虛數(shù)單位,復數(shù)z=(2-i)(1+i)2的實部為a,虛部為b,則logab=( 。

查看答案和解析>>

同步練習冊答案