如圖,在長方體ABCD—A1B1C1D1中,E,P分別是BC,A1D1的中點,M,N分別是AE,CD1的中點,AD=AA1=a,AB=2a.

(1)求證:MN∥平面ADD1A1;

(2)求三棱錐P—DEN的體積.

(1)取CD的中點K,連接MK,NK,

∵M,N,K分別為AE,CD1,CD的中點,

∴MK∥AD,NK∥DD1,

∴MK∥平面ADD1A1,NK∥平面ADD1A1,MK∩NK=K,

∴平面MNK∥平面ADD1A1,∴MN∥平面ADD1A1.

(2)SNEPBC·CD1·a·a2,

作DQ⊥CD1,交CD1于Q,

由A1D1⊥平面CDD1C1得A1D1⊥DQ.

∴DQ⊥平面BCD1A1,

∴在Rt△CDD1中,DQ=a.

∴VP—DEN=VD—ENPSNEP·DQ=·a2·a=a3.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖在長方體ABCD-A1B1C1D1中,三棱錐A1-ABC的面是直角三角形的個數(shù)為:
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,定義八個頂點都在某圓柱的底面圓周上的長方體叫做圓柱的內(nèi)接長方體,圓柱也叫長方體的外接圓柱.設(shè)長方體ABCD-A1B1C1D1的長、寬、高分別為a,b,c(其中a>b>c),那么該長方體的外接圓柱側(cè)面積的最大值等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.如圖,在長方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.         B.               C.                 D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.如圖,在長方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.            B.              C.              D.1

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年四川省成都市高二3月月考數(shù)學試卷 題型:填空題

(文科做)(本題滿分14分)如圖,在長方體

ABCDA1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.

(1)證明:D1EA1D;

(2)當EAB的中點時,求點E到面ACD1的距離;

(3)AE等于何值時,二面角D1ECD的大小為.                      

 

 

 

(理科做)(本題滿分14分)

     如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

CA =AA1 =,M為側(cè)棱CC1上一點,AMBA1

   (Ⅰ)求證:AM⊥平面A1BC;

   (Ⅱ)求二面角BAMC的大小;

   (Ⅲ)求點C到平面ABM的距離.

 

 

 

 

 

查看答案和解析>>

同步練習冊答案