已知無窮數(shù)列的前項(xiàng)和為,且滿足,其中、、是常數(shù).

(1)若,,求數(shù)列的通項(xiàng)公式;

(2)若,,且,求數(shù)列的前項(xiàng)和;

(3)試探究、、滿足什么條件時(shí),數(shù)列是公比不為的等比數(shù)列.

 

【答案】

(1);(2);(3),

【解析】

試題分析:(1)已知的關(guān)系,要求,一般是利用它們之間的關(guān)系,把,化為,得出數(shù)列的遞推關(guān)系,從而求得通項(xiàng)公式;(2)與(1)類似,先求出,時(shí),推導(dǎo)出之間的關(guān)系,求出通項(xiàng)公式,再求出前項(xiàng)和;(3)這是一類探究性命題,可假設(shè)結(jié)論成立,然后由這個(gè)假設(shè)的結(jié)論來推導(dǎo)出條件,本題設(shè)數(shù)列是公比不為的等比數(shù)列,則,,代入恒成立的等式,得

對(duì)于一切正整數(shù)都成立,所以,,,得出這個(gè)結(jié)論之后,還要反過來,由這個(gè)條件證明數(shù)列是公比不為的等比數(shù)列,才能說明這個(gè)結(jié)論是正確的.在討論過程中,還要討論的情況,因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030303210687506371/SYS201403030322198125758824_DA.files/image024.png">時(shí),,,當(dāng)然這種情況下,不是等比數(shù)列,另外

試題解析:(1)由,得;                1分

當(dāng)時(shí),,即        2分

所以;                      1分

(2)由,得,進(jìn)而,    1分

當(dāng)時(shí),

因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030303210687506371/SYS201403030322198125758824_DA.files/image037.png">,所以,            2分

進(jìn)而                    2分

(3)若數(shù)列是公比為的等比數(shù)列,

①當(dāng)時(shí),

,得恒成立.

所以,與數(shù)列是等比數(shù)列矛盾;               1分

②當(dāng)時(shí),,,        1分

恒成立,

對(duì)于一切正整數(shù)都成立

所以,             3分

事實(shí)上,當(dāng),,時(shí),

,時(shí),,得

所以數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列           2分

考點(diǎn):的關(guān)系:,等差數(shù)列與等比數(shù)列的定義.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海金山中學(xué)高三第一學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題

已知無窮等比數(shù)列的前項(xiàng)和的極限存在,且,,則數(shù)列各項(xiàng)的和為______________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市十三校高三12月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知無窮數(shù)列的前項(xiàng)和為,且滿足,其中、是常數(shù).

(1)若,,求數(shù)列的通項(xiàng)公式;

(2)若,,,且,求數(shù)列的前項(xiàng)和;

(3)試探究、、滿足什么條件時(shí),數(shù)列是公比不為的等比數(shù)列.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇省南京市高三9月學(xué)情調(diào)研文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知無窮數(shù)列中,、 、構(gòu)成首項(xiàng)為2,公差為-2的等差數(shù)列,、、,構(gòu)成首項(xiàng)為,公比為的等比數(shù)列,其中,.

(1)當(dāng),,時(shí),求數(shù)列的通項(xiàng)公式;

(2)若對(duì)任意的,都有成立.

①當(dāng)時(shí),求的值;

②記數(shù)列的前項(xiàng)和為.判斷是否存在,使得成立?若存在,求出的值;若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高級(jí)中高三第二次月考試卷數(shù)學(xué) 題型:填空題

已知無窮等比數(shù)列的前項(xiàng)和的極限存在,且,,則數(shù)列各項(xiàng)的和為            

 

查看答案和解析>>

同步練習(xí)冊(cè)答案