在三棱錐P-ABC中,AB⊥AC,AC=4,,,側(cè)棱PA、PB、PC與底面ABC所成的角相等.
(Ⅰ)求二面角P-AC-B的大;
(Ⅱ)求點(diǎn)B到平面PAC的距離.

【答案】分析:(Ⅰ)由已知,p在平面ABC內(nèi)的射影是Rt△ABC的外心,即斜邊BC的中點(diǎn)O.取AC的中點(diǎn)D,連PD,DO,PO,根據(jù)三垂線定理,∠PDO 為所求,再解三角形求出二面角的大小即可.
(Ⅱ)利用等體積變換,VP-ABC=VB-PAC=,其中點(diǎn)B到平面PAC的距離,求出三角形PAC的面積,代入求解即可.
解答:解:(Ⅰ)∵側(cè)棱PA、PB、PC與底面ABC所成的角相等,
∴點(diǎn)P在平面ABC內(nèi)的射影是Rt△ABC的外心,即斜邊BC的中點(diǎn)O
取AC的中點(diǎn)D,連PD,DO,PO,則,
∴OP=6.∵OP⊥平面ABC,
∴OD是PD在平面ABC內(nèi)的射影,
∵AC⊥OD,∴AC⊥PD.∴∠PDO為二面角P-AC-B的平面角. 
在Rt△POD中,
,
故二面角P-AC-B的大小為. 
(Ⅱ)∵AC=4,,

設(shè)點(diǎn)B到平面PAC的距離為h,則由VP-ABC=
解方程得h=6,∴點(diǎn)B到平面PAC的距離等于6.
點(diǎn)評(píng):本題考查二面角、點(diǎn)到平面距離的計(jì)算,考查學(xué)生空間想象能力,計(jì)算能力、轉(zhuǎn)化能力.空間問題平面化,是解決空間問題最核心的思想方法. 在點(diǎn)到平面距離的計(jì)算問題中,利用等體積變換也是常用方法,好處在于不用具體作出點(diǎn)到面的垂線段.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=
2
PC=
2
AC=
2
BC

(Ⅰ)求證:PA⊥BC; 
(Ⅱ)求二面角P-AB-C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐P-ABC中,AB=3,BC=4,AC=5,PA=1  面PAB⊥面CAB,面PAC⊥面CAB,則三棱錐P-ABC的體積是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在三棱錐P-ABC中,PA⊥平面ABC.
(1)若∠BAC=
π3
,AB=AC=PA=2,E、F分別為棱AB、PC的中點(diǎn),求線段EF的長(zhǎng);
(2)求證:“∠PBC=90°”的充要條件是“平面PBC⊥平面PAB”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•蚌埠二模)如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分別為AB,AC中點(diǎn).
(I)求證:DE∥面PBC;
(II)求證:AB⊥PE;
(III)求三棱錐B-PEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC上一點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖所示.
(1)證明:AD⊥平面PBC;
(2)求三棱錐D-ABC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案