【題目】如圖所示,在四棱柱中,底面是梯形,,側(cè)面為菱形,.

(Ⅰ)求證:;

(Ⅱ)若,直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:(1)考慮用向量法來(lái)證明,即計(jì)算來(lái)證明.具體方法是將轉(zhuǎn)化為同起點(diǎn)的向量,即,利用,可求得;(2)設(shè)線段的中點(diǎn)為以射線射線、射線軸、軸、軸的正方向建立空間直角坐標(biāo)系,利用向量法求得二面角的余弦值為.

試題解析:

1)解一:因?yàn)閭?cè)面為菱形,所以,又,所以,

2)設(shè)線段的中點(diǎn)為,連接,由題意知平面,因?yàn)閭?cè)面為菱形,所以,故可分別以射線射線、射線軸、軸、軸的正方向建立空間直角坐標(biāo)系

設(shè),由可知,所以,從而,所以

可得,所以

設(shè)平面的一個(gè)法向量為,由,得,則,所以.又平面的法向量為,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=

(e為自然對(duì)數(shù)的底數(shù)),則f(e)=________,函數(shù)yf(f(x))-1的零點(diǎn)個(gè)數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是奇函數(shù),則實(shí)數(shù)m的值是______;若函數(shù)fx)在區(qū)間[-1a-2]上滿足對(duì)任意x1x2,都有成立,則實(shí)數(shù)a的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題:

①若是定義在上的偶函數(shù),且在上是增函數(shù),,則;

②若銳角滿足c,則

③若,則對(duì)恒成立;

④要得到的圖像,只需將的圖像向右平移個(gè)單位:

其中真命題的個(gè)數(shù)有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的頂點(diǎn), 在橢圓上, 在直線上,且

)求橢圓的離心率.

)當(dāng)邊通過(guò)坐標(biāo)原點(diǎn)時(shí),求的長(zhǎng)及的面積.

)當(dāng),且斜邊的長(zhǎng)最大時(shí),求所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某投資公司計(jì)劃投資,兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),產(chǎn)品的利潤(rùn)與投資金額的函數(shù)關(guān)系為產(chǎn)品的利潤(rùn)與投資金額的函數(shù)關(guān)系為.(注:利潤(rùn)與投資金額單位:萬(wàn)元)

(1)該公司已有100萬(wàn)元資金,并全部投入,兩種產(chǎn)品中,其中萬(wàn)元資金投入產(chǎn)品,試把兩種產(chǎn)品利潤(rùn)總和表示為的函數(shù),并寫(xiě)出定義域;

(2)試問(wèn):怎樣分配這100萬(wàn)元資金,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?

【答案】(1);(2)20,28.

【解析】

1)設(shè)投入產(chǎn)品萬(wàn)元,則投入產(chǎn)品萬(wàn)元,根據(jù)題目所給兩個(gè)產(chǎn)品利潤(rùn)的函數(shù)關(guān)系式,求得兩種產(chǎn)品利潤(rùn)總和的表達(dá)式.2)利用基本不等式求得利潤(rùn)的最大值,并利用基本不等式等號(hào)成立的條件求得資金的分配方法.

(1)其中萬(wàn)元資金投入產(chǎn)品,則剩余的(萬(wàn)元)資金投入產(chǎn)品,

利潤(rùn)總和為: ,

(2)因?yàn)?/span>,

所以由基本不等式得:,

當(dāng)且僅當(dāng)時(shí),即:時(shí)獲得最大利潤(rùn)28萬(wàn).

此時(shí)投入A產(chǎn)品20萬(wàn)元,B產(chǎn)品80萬(wàn)元.

【點(diǎn)睛】

本小題主要考查利用函數(shù)求解實(shí)際應(yīng)用問(wèn)題,考查利用基本不等式求最大值,屬于中檔題.

型】解答
結(jié)束】
20

【題目】已知曲線.

(1)求曲線在處的切線方程;

(2)若曲線在點(diǎn)處的切線與曲線相切,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三年級(jí)50名學(xué)生參加數(shù)學(xué)競(jìng)賽,根據(jù)他們的成績(jī)繪制了如圖所示的頻率分布直方圖,已知分?jǐn)?shù)在的矩形面積為,

求:分?jǐn)?shù)在的學(xué)生人數(shù);

這50名學(xué)生成績(jī)的中位數(shù)精確到;

若分?jǐn)?shù)高于60分就能進(jìn)入復(fù)賽,從不能進(jìn)入復(fù)賽的學(xué)生中隨機(jī)抽取兩名,求兩人來(lái)自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐的底面為菱形,且, 中點(diǎn).

(Ⅰ)證明: 平面;

(Ⅱ)若 ,求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知橢圓W:+=1(a>b>0),直線=軸,軸的交點(diǎn)分別是橢圓W的焦點(diǎn)與頂點(diǎn)。

(1)求橢圓W的方程;

(2)設(shè)直線m:=kx(k≠0)與橢圓W交于P,Q兩點(diǎn),過(guò)點(diǎn)P(,)作PC⊥軸,垂足為點(diǎn)C,直線交橢圓w于另一點(diǎn)R。

①求△PCQ面積的最大值;②求出∠QPR的大小。

查看答案和解析>>

同步練習(xí)冊(cè)答案