【題目】已知無窮數(shù)列的各項(xiàng)均為正數(shù),其前項(xiàng)和為, .

(1)如果,且對于一切正整數(shù),均有,求

(2)如果對于一切正整數(shù),均有,求

(3)如果對于一切正整數(shù),均有,證明: 能被8整除.

【答案】(1) ;(2) (3) 見解析.

【解析】試題分析:1,得,根據(jù)等比數(shù)列的通項(xiàng)公式得到通項(xiàng);2)推導(dǎo)出an+1an1=1a1=4,由anan+1=Sn,得a2=1a3=5,a4=3,由此根據(jù)n為偶數(shù)和n為奇數(shù),能求出Sn的值;(3)推導(dǎo)出分別求出前4項(xiàng)的值,利用數(shù)學(xué)歸納法能證明a3n1能被8整除.

解析

(1) 數(shù)列的各項(xiàng)均為正數(shù),由,得

數(shù)列是等比數(shù)列,公比,從而

(2) ,兩式相減得,

此數(shù)列各均為正數(shù), 數(shù)列和數(shù)列均是公差為1的等差數(shù)列.由,得

當(dāng)為偶數(shù)時(shí),

當(dāng)為奇數(shù)時(shí),

(3) ,兩式相減得.

,得

以下證明:對于, 被8除余數(shù)為4, 被8整除, 被8除余數(shù)為4.

當(dāng)時(shí), , ,命題正確.

假設(shè)時(shí),命題正確,即, , 其中

那么, 為正整數(shù), 被8除余數(shù)為4.

為正整數(shù), 能被8整除.

為正整數(shù), 被8除余數(shù)為4.

時(shí),命題也正確.

從而證得,對于一切正整數(shù) 能被8整除.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知直線與圓O:相切.

(1)直線l過點(diǎn)(2,1)且截圓O所得的弦長為,求直線l的方程;

(2)已知直線y=3與圓O交于A,B兩點(diǎn),P是圓上異于A,B的任意一點(diǎn),且直線AP,BPy軸相交于M,N點(diǎn).判斷點(diǎn)M、N的縱坐標(biāo)之積是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一舉行了一次數(shù)學(xué)競賽,為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為)作為樣本(樣本容量)進(jìn)行統(tǒng)計(jì),按照、、、、的分組作出頻率分布直方圖,已知得分在、的頻數(shù)分別為、.

1)求樣本容量和頻率分布直方圖中的的值;

2)估計(jì)本次競賽學(xué)生成績的眾數(shù)、中位數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高二年級(jí)組織外出參加學(xué)業(yè)水平考試,出行方式為:乘坐學(xué)校定制公交或自行打車前往,大數(shù)據(jù)分析顯示,當(dāng)的學(xué)生選擇自行打車,自行打車的平均時(shí)間為 (單位:分鐘) ,而乘坐定制公交的平均時(shí)間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當(dāng)在什么范圍內(nèi)時(shí),乘坐定制公交的平均時(shí)間少于自行打車的平均時(shí)間?

(2)求該校學(xué)生參加考試平均時(shí)間的表達(dá)式:討論的單調(diào)性,并說明其實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某動(dòng)物園要為剛?cè)雸@的小動(dòng)物建造一間兩面靠墻的三角形露天活動(dòng)室,地面形狀如圖所示,已知已有兩面墻的夾角為,墻的長度為米,(已有兩面墻的可利用長度足夠大),記.

(1)若,求的周長(結(jié)果精確到0.01米);

(2)為了使小動(dòng)物能健康成長,要求所建的三角形露天活動(dòng)室面積,的面積盡可能大,當(dāng)為何值時(shí),該活動(dòng)室面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六組[90,100),[100,110),[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

1)求分?jǐn)?shù)在[120,130)內(nèi)的頻率;

2)若在同一組數(shù)據(jù)中,將該組區(qū)間的中點(diǎn)值(如:組區(qū)間[100110)的中點(diǎn)值為=105)作為這組數(shù)據(jù)的平均分,據(jù)此,估計(jì)本次考試的平均分;

3)用分層抽樣的方法在分?jǐn)?shù)段為[110130)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系動(dòng)點(diǎn)到定點(diǎn)的距離與它到直線的距離相等.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)設(shè)動(dòng)直線與曲線相切于點(diǎn),與直線相交于點(diǎn)

證明:以為直徑的圓恒過軸上某定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和滿足 .

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列滿足,

(I)求數(shù)列的前項(xiàng)和

(II)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M,直線l,下列四個(gè)選項(xiàng),其中正確的是(

A.對任意實(shí)數(shù)kθ,直線l和圓M有公共點(diǎn)

B.存在實(shí)數(shù)kθ,直線l和圓M相離

C.對任意實(shí)數(shù)k,必存在實(shí)數(shù)θ,使得直線l與圓M相切

D.對任意實(shí)數(shù)θ,必存在實(shí)數(shù)k,使得直線l與圓M相切

查看答案和解析>>

同步練習(xí)冊答案