【題目】某共享單車(chē)經(jīng)營(yíng)企業(yè)欲向甲市投放單車(chē),為制定適宜的經(jīng)營(yíng)策略,該企業(yè)首先在已投放單車(chē)的乙市進(jìn)行單車(chē)使用情況調(diào)查.調(diào)查過(guò)程分隨機(jī)問(wèn)卷、整理分析及開(kāi)座談會(huì)三個(gè)階段.在隨機(jī)問(wèn)卷階段,,兩個(gè)調(diào)查小組分赴全市不同區(qū)域發(fā)放問(wèn)卷并及時(shí)收回;在整理分析階段,兩個(gè)調(diào)查小組從所獲取的有效問(wèn)卷中,針對(duì)15至45歲的人群,按比例隨機(jī)抽取了300份,進(jìn)行了數(shù)據(jù)統(tǒng)計(jì),具體情況如下表:
組別 年齡 | 組統(tǒng)計(jì)結(jié)果 | 組統(tǒng)計(jì)結(jié)果 | ||
經(jīng)常使用單車(chē) | 偶爾使用單車(chē) | 經(jīng)常使用單車(chē) | 偶爾使用單車(chē) | |
27人 | 13人 | 40人 | 20人 | |
23人 | 17人 | 35人 | 25人 | |
20人 | 20人 | 35人 | 25人 |
(1)先用分層抽樣的方法從上述300人中按“年齡是否達(dá)到35歲”抽出一個(gè)容量為60人的樣本,再用分層抽樣的方法將“年齡達(dá)到35歲”的被抽個(gè)體數(shù)分配到“經(jīng)常使用單車(chē)”和“偶爾使用單車(chē)”中去.
①求這60人中“年齡達(dá)到35歲且偶爾使用單車(chē)”的人數(shù);
②為聽(tīng)取對(duì)發(fā)展共享單車(chē)的建議,調(diào)查組專門(mén)組織所抽取的“年齡達(dá)到35歲且偶爾使用單車(chē)”的人員召開(kāi)座談會(huì).會(huì)后共有3份禮品贈(zèng)送給其中3人,每人1份(其余人員僅贈(zèng)送騎行優(yōu)惠券).已知參加座談會(huì)的人員中有且只有4人來(lái)自組,求組這4人中得到禮品的人數(shù)的分布列和數(shù)學(xué)期望;
(2)從統(tǒng)計(jì)數(shù)據(jù)可直觀得出“是否經(jīng)常使用共享單車(chē)與年齡(記作歲)有關(guān)”的結(jié)論.在用獨(dú)立性檢驗(yàn)的方法說(shuō)明該結(jié)論成立時(shí),為使犯錯(cuò)誤的概率盡可能小,年齡應(yīng)取25還是35?請(qǐng)通過(guò)比較的觀測(cè)值的大小加以說(shuō)明.
參考公式:,其中.
【答案】(1) ①9人 ②見(jiàn)解析;(2)
【解析】
(1)①根據(jù)分層抽樣要求,先求從300人中抽取60人,其中“年齡達(dá)到35歲”的人數(shù),再求“年齡達(dá)到35歲” 中偶爾使用單車(chē)的人數(shù);
②確定隨機(jī)變量X的取值,計(jì)算X各個(gè)取值的概率,得分布列及數(shù)學(xué)期望.
(2)對(duì)年齡m是否達(dá)到35,m是否達(dá)到25對(duì)數(shù)據(jù)重新整理(22聯(lián)表),根據(jù)公式計(jì)算相應(yīng)的,比較大小確定.
(1)①?gòu)?00人中抽取60人,其中“年齡達(dá)到35歲”的有人,再將這20人用分層抽樣法按“是否經(jīng)常使用單車(chē)”進(jìn)行名額劃分,其中“年齡達(dá)到35歲且偶爾使用單車(chē)”的人數(shù)為.
②組這4人中得到禮品的人數(shù)的可能取值為0,1,2,3,相應(yīng)概率為:
,,
,.
故其分布列為
0 | 1 | 2 | 3 | |
∴.
(2)按“年齡是否達(dá)到35歲”對(duì)數(shù)據(jù)進(jìn)行整理,得到如下列聯(lián)表:
經(jīng)常使用單車(chē) | 偶爾使用單車(chē) | 合計(jì) | |
未達(dá)到35歲 | 125 | 75 | 200 |
達(dá)到35歲 | 55 | 45 | 100 |
合計(jì) | 180 | 120 | 300 |
時(shí),由(1)中的列聯(lián)表,可求得的觀測(cè)值
.
時(shí),按“年齡是否達(dá)到25歲”對(duì)數(shù)據(jù)進(jìn)行整理,得到如下列聯(lián)表:
經(jīng)常使用單車(chē) | 偶爾使用單車(chē) | 合計(jì) | |
未達(dá)到25歲 | 67 | 33 | 100 |
達(dá)到25歲 | 113 | 87 | 200 |
合計(jì) | 180 | 120 | 300 |
可求得的觀測(cè)值
.
∴,
欲使犯錯(cuò)誤的概率盡可能小,需取.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程恰有四個(gè)不同的實(shí)數(shù)根,當(dāng)函數(shù)時(shí),實(shí)數(shù)的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點(diǎn).
(1)求證:平面平面;
(2)求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某百貨商店今年春節(jié)期間舉行促銷(xiāo)活動(dòng),規(guī)定消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)活動(dòng)的有效開(kāi)展,參與抽獎(jiǎng)活動(dòng)的人數(shù)越來(lái)越多,該商店經(jīng)理對(duì)春節(jié)前天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),表示第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
5 | 8 | 8 | 10 | 14 | 15 | 17 |
(1)經(jīng)過(guò)進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)該商店規(guī)定:若抽中“一等獎(jiǎng)”,可領(lǐng)取600元購(gòu)物券;抽中“二等獎(jiǎng)”可領(lǐng)取300元購(gòu)物券;抽中“謝謝惠顧”,則沒(méi)有購(gòu)物券.已知一次抽獎(jiǎng)活動(dòng)獲得“一等獎(jiǎng)”的概率為,獲得“二等獎(jiǎng)”的概率為.現(xiàn)有張、王兩位先生參與了本次活動(dòng),且他們是否中獎(jiǎng)相互獨(dú)立,求此二人所獲購(gòu)物券總金額的分布列及數(shù)學(xué)期望.
參考公式:,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求不等式的解集;
(2)若,且對(duì)任意,恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,四點(diǎn)、、、中恰有三點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)已知點(diǎn)是橢圓的右頂點(diǎn),作一條平行于的直線交橢圓于、兩點(diǎn),記直線和直線的斜率分別為、,試判斷是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:
①是偶函數(shù);②在區(qū)間單調(diào)遞減;
③在有個(gè)零點(diǎn);④的最大值為.
其中所有正確結(jié)論的編號(hào)是( )
A.①②④B.②④C.①④D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】氣象意義上,從春季進(jìn)入夏季的標(biāo)志為:“連續(xù)5天的日平均溫度不低于22℃”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):
①甲地:5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;
②乙地:5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24;
③丙地:5個(gè)數(shù)據(jù)的中有一個(gè)數(shù)據(jù)是32,總體均值為26,總體方差為10.8;
則肯定進(jìn)入夏季的地區(qū)的有( )
A. ①②③ B. ①③ C. ②③ D. ①
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為慶祝新中國(guó)成立七十周年,巴蜀中學(xué)將舉行“歌唱祖國(guó),喜迎國(guó)慶”歌詠比賽活動(dòng),《歌唱祖國(guó)》,《精忠報(bào)國(guó)》,《我和我的祖國(guó)》等一系列歌曲深受同學(xué)們的青睞,高二某班級(jí)就該班是否選擇《精忠報(bào)國(guó)》作為本班參賽曲目進(jìn)行投票表決,投票情況如下表.
小組 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
贊成人數(shù) | 4 | 5 | 6 | 6 | 5 | 6 | 4 | 3 |
總?cè)藬?shù) | 7 | 7 | 8 | 8 | 7 | 7 | 6 | 6 |
(1)若從第1小組和第8小組的同學(xué)中各隨機(jī)選取2人進(jìn)行調(diào)查,求所選取的4人中至少有2人贊成《精忠報(bào)國(guó)》作為本班參賽曲目的概率;
(2)若從第5小組和第7小組的同學(xué)中各隨機(jī)選取2人進(jìn)行調(diào)查,記選取的4人中不贊成《精忠報(bào)國(guó)》作為本班參賽曲目的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com