設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)·g(x)+f(x)·g′(x)>0,且f(-3)·g(-3)=0,則不等式f(x)·g(x)<0的解集是( )
A.(-3,0)∪(3,+∞) |
B.(-3,0)∪ (0,3) |
C.(-∞,-3)∪(3,+∞) |
D.(-∞,-3)∪(0,3) |
D
解析試題分析:設(shè)F(x)="f" (x)g(x),當(dāng)x<0時(shí),∵F′(x)=f′(x)g(x)+f (x)g′(x)>0.∴F(x)在當(dāng)x<0時(shí)為增函數(shù).
∵F(-x)="f" (-x)g (-x)="-f" (x)•g (x)=-F(x).
故F(x)為(-∞,0)∪(0,+∞)上的奇函數(shù).
∴F(x)在(0,∞)上亦為增函數(shù).
已知f(-3)·g(-3)=0,必有F(-3)=F(3)=0.
構(gòu)造如圖的F(x)的圖象,
可知F(x)<0的解集為x∈(-∞,-3)∪(0,3).
考點(diǎn):本試題主要考查了復(fù)合函數(shù)的求導(dǎo)運(yùn)算和函數(shù)的單調(diào)性與其導(dǎo)函數(shù)正負(fù)之間的關(guān)系.
點(diǎn)評:導(dǎo)數(shù)是一個(gè)新內(nèi)容,也是高考的熱點(diǎn)問題,要多注意復(fù)習(xí).解決該試題的關(guān)鍵是先根據(jù)f’(x)g(x)+f(x)g’(x)>0可確定[f(x)g(x)]'>0,進(jìn)而可得到f(x)g(x)在x<0時(shí)遞增。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
由曲線y=x2和直線x=0,x=1,y=t2,t∈(0,1)所圍成的圖形(陰影部分)的面積的最小值為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知二次函數(shù)的導(dǎo)數(shù)為,,對于任意實(shí)數(shù),有,則的最小值為
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知定義在實(shí)數(shù)集上的函數(shù)滿足,且的導(dǎo)函數(shù)在上恒有的解集為
A. | B. |
C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com