3.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,PD⊥平面ABCD,AD⊥BD,AD=BD=2,E為BD的中點(diǎn),F(xiàn)為PC的中點(diǎn).
(1)證明:EF∥平面ADP;
(2)PD=$\sqrt{2}$,求三棱錐F-BDC的體積.

分析 (1)連結(jié)AC,推導(dǎo)出EF∥PA,由此能證明EF∥平面ADP.
(2)點(diǎn)F到平面ABCD的距離是$\frac{1}{2}$PD=$\frac{\sqrt{2}}{2}$,由此能求出三棱錐F-BDC的體積.

解答 證明:(1)如圖,連結(jié)AC,
∵四邊形ABCD為平行四邊形,且E為BD的中點(diǎn),
∴AC∩BD=E,∴E為AC的中點(diǎn),
又∵F為PC的中點(diǎn),
∴EF是△PAC的中位線,∴EF∥PA,
又∵PA?平面ADP,EF?平面ADP,
∴EF∥平面ADP.
解:(2)∵F為PC的中點(diǎn),∴點(diǎn)F到平面ABCD的距離是$\frac{1}{2}$PD=$\frac{\sqrt{2}}{2}$,
∴三棱錐F-BDC的體積VF-BDC=$\frac{1}{3}×\frac{2×2}{2}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{3}$.

點(diǎn)評(píng) 本題考查線面平行的證明,考查三棱錐的體積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知底面邊長(zhǎng)為$2\sqrt{3}$的正三棱錐O-ABC的體積為$\sqrt{3}$,且A,B,C在球O上,則球的體積是(  )
A.$\frac{{20\sqrt{5}π}}{3}$B.C.20πD.$4\sqrt{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=2tan(ωx+ϕ)$({ω>0,|ϕ|<\frac{π}{2}})$的最小正周期為$\frac{π}{2}$,且$f({\frac{π}{2}})=-2$,則ω=2,ϕ=-$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.直線x+2y-5+$\sqrt{15}$=0被圓x2+y2-2x-4y=0截得的弦長(zhǎng)為(  )
A.1B.2$\sqrt{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知圓心C的坐標(biāo)為(2,-2),圓C與x軸和y軸都相切
(1)求圓C的方程
(2)求與圓C相切,且在x軸和y軸上的截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn)分別為(-1,0),(1,0),且經(jīng)過(guò)點(diǎn)(1,$\frac{3}{2}$).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)經(jīng)過(guò)點(diǎn)(1,0)且不垂直于x軸的直線l與橢圓交于不同的兩點(diǎn)P,Q.求證:在x軸上存在定點(diǎn)N,使得直線NP,NQ的傾斜角互補(bǔ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.給定矩陣A=$[\begin{array}{l}{1}&{2}\\{2}&{3}\end{array}]$,B=$[\begin{array}{l}{-\frac{3}{2}}&{2}\\{1}&{-1}\end{array}]$,設(shè)橢圓$\frac{{x}^{2}}{4}$+y2=1在矩陣AB對(duì)應(yīng)的變換下得到曲線F,求F的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知?jiǎng)狱c(diǎn)P(x,y)的坐標(biāo)x,y滿足xcosα+ysinα=1(α∈R),|x|+|y|≤2,則當(dāng)α變化時(shí),點(diǎn)P的軌跡所形成的圖象的面積是8-π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)的定義域?yàn)镽,且x3f(x)+x3f(-x)=0,若對(duì)任意x∈[0,+∞)都有3xf(x)+x2f'(x)<2,則不等式x3f(x)-8f(2)<x2-4的解集為( 。
A.(-2,2)B.(-∞,-2)∪(2,+∞)C.(-4,4)D.(-∞,-4)∪(4,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案