【題目】假設(shè)關(guān)于某種設(shè)備的使用年限 ()與所支出的維修費(fèi)用 (萬(wàn)元)有如下統(tǒng)計(jì)資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

已知.

,

(1),

(2) 具有線(xiàn)性相關(guān)關(guān)系,求出線(xiàn)性回歸方程;

(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?

【答案】(1)4,5(2)=1.23x+0.08(3)12.38萬(wàn)元

【解析】

(1)根據(jù)公式易得,

(2)根據(jù)(1),根據(jù)最小二乘法做出線(xiàn)性回歸方程的系數(shù),再根據(jù)樣本中心點(diǎn)一定在線(xiàn)性回歸直線(xiàn)上,求出的值.寫(xiě)出線(xiàn)性回歸方程
(2)根據(jù)線(xiàn)性回歸方程,,當(dāng)自變量為10時(shí),代入線(xiàn)性回歸方程,求出維修費(fèi)用,這是一個(gè)預(yù)報(bào)值.

(1)=(2+3+4+5+6)=4,=(2.2+3.8+5.5+6.5+7)=5,

(2)=2×2.2+3×3.8+4×5.5+5×6.5+6×7=112.3,=90

∴b=1.23,a==5﹣1.23×4=0.08.

∴回歸直線(xiàn)方程為=1.23x+0.08.

(3)當(dāng)x=10時(shí),y=1.23×10+0.08=12.38(萬(wàn)元),

即估計(jì)使用10年時(shí)維修費(fèi)約為12.38萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家具城進(jìn)行促銷(xiāo)活動(dòng),促銷(xiāo)方案是:顧客每消費(fèi)滿(mǎn)1000元,便可以獲得獎(jiǎng)券一張,每張獎(jiǎng)券中獎(jiǎng)的概率為,若中獎(jiǎng),則家具城返還顧客現(xiàn)金1000元,某顧客購(gòu)買(mǎi)一張價(jià)格為3400元的餐桌,得到3張獎(jiǎng)券,設(shè)該顧客購(gòu)買(mǎi)餐桌的實(shí)際支出為(元);

(1)求的所有可能取值;

(2)求的分布列和數(shù)學(xué)期望;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,假命題為(  )

A. 存在四邊相等的四邊形不是正方形

B. z1,z2C,z1z2為實(shí)數(shù)的充分必要條件是z1z2互為共軛復(fù)數(shù)

C. x,yR,且xy>2,則xy至少有一個(gè)大于1

D. 對(duì)于任意nN,都是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一盒中裝有9張各寫(xiě)有一個(gè)數(shù)字的卡片,其中4張卡片上數(shù)字是1,3張卡片上數(shù)字是2,2張卡片上數(shù)字是3.從盒中任取3張卡片.

(1)求所取3張卡片上數(shù)字完全相同的概率;

(2)已知取出的一張卡片上數(shù)字是1,求3張卡片上數(shù)字之和為5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一臺(tái)機(jī)器在一天內(nèi)發(fā)生故障的概率為p.已知這臺(tái)機(jī)器在3個(gè)工作日至少一天不發(fā)生故障的概率為0.999.

(1)求p;

(2)若這臺(tái)機(jī)器一周5個(gè)工作日不發(fā)生故障,可獲利5萬(wàn)元;發(fā)生一次故障任可獲利2.5萬(wàn)元;發(fā)生2次故障的利潤(rùn)為0元;發(fā)生3次或3次以上故障要虧損1萬(wàn)元.這臺(tái)機(jī)器一周內(nèi)可能獲利的均值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù), =2.71828…).

(1)當(dāng)時(shí),過(guò)點(diǎn)作曲線(xiàn)的切線(xiàn),求的方程;

(2)當(dāng)時(shí),求證;

(3)求證:對(duì)任意正整數(shù),都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)閇﹣1,5],部分對(duì)應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,

x

﹣1

0

2

4

5

f(x)

1

2

1.5

2

1

下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)f(x)的值域?yàn)閇1,2];
②如果當(dāng)x∈[﹣1,t]時(shí),f(x)的最大值為2,那么t的最大值為4;
③函數(shù)f(x)在[0,2]上是減函數(shù);
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)﹣a最多有4個(gè)零點(diǎn).
其中正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為ρ=2sin θ,θ∈[0,2π).

(1)求曲線(xiàn)C的直角坐標(biāo)方程;

(2)在曲線(xiàn)C上求一點(diǎn)D,使它到直線(xiàn)l:的距離最短,并求出點(diǎn)D的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)

(1)若,過(guò)點(diǎn)的直線(xiàn)交曲線(xiàn)兩點(diǎn),且,求直線(xiàn)的方程;

(2)若曲線(xiàn)表示圓時(shí),已知圓與圓交于兩點(diǎn),若弦所在的直線(xiàn)方程為, 為圓的直徑,且圓過(guò)原點(diǎn),求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案