已知函數(shù)
(1)求函數(shù)在點(0,f(0))處的切線方程;
(2)求函數(shù)單調(diào)遞增區(qū)間;
(3)若∈[1,1],使得(e是自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.
(1)函數(shù)在點處的切線方程為;(2)函數(shù)單調(diào)遞增區(qū)間;
(3)實數(shù)a的取值范圍是.

試題分析:⑴ 先根據(jù)函數(shù)解析式求出,把代入求出斜率,進(jìn)而求得切線方程;⑵ 因為當(dāng)時,總有上是增函數(shù), 又,所以函數(shù)的單調(diào)增區(qū)間為;⑶ 要使成立,只需成立即可;再分兩種情況討論即可.
試題解析:⑴ 因為函數(shù)
所以,,                     2分
又因為,所以函數(shù)在點處的切線方程為.          4分
⑵ 由⑴,
因為當(dāng)時,總有上是增函數(shù),
,所以不等式的解集為,
故函數(shù)的單調(diào)增區(qū)間為                        8分
⑶ 因為存在,使得成立,
而當(dāng)時,,
所以只要即可                       9分
又因為,的變化情況如下表所示:









減函數(shù)
極小值
增函數(shù)
所以上是減函數(shù),在上是增函數(shù),所以當(dāng)時,的最小值
,的最大值中的最大值.
因為,
,因為,
所以上是增函數(shù).
,故當(dāng)時,,即;
當(dāng)時,,即
所以,當(dāng)時,,即,函數(shù)上是增函數(shù),解得;當(dāng)時,,即,函數(shù)上是減函數(shù),解得
綜上可知,所求的取值范圍為                 13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=ex(x+1),給出下列命題:
①當(dāng)x>0時,f(x)=ex(1-x);②函數(shù)f(x)有兩個零點;③f(x)>0的解集為(-1,0)∪(1,+∞);④?x1,x2∈R,都有|f(x1)-f(x2)|<2.
其中正確命題的個數(shù)是(  )
A.1 B.2
C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時,求函數(shù)的定義域;
(2)若關(guān)于的不等式的解集是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的定義域為,若上為增函數(shù),則稱為“一階比增函數(shù)”;若上為增函數(shù),則稱為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為,所有“二階比增函數(shù)”組成的集合記為.
(Ⅰ)已知函數(shù),若,求實數(shù)的取值范圍;
(Ⅱ)已知,的部分函數(shù)值由下表給出,










 求證:;
(Ⅲ)定義集合
請問:是否存在常數(shù),使得,,有成立?若存在,求出的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若a=50.2,b=0.50.2,c=0.52,則(  )
A.a(chǎn)>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=ax+b(a>0且a≠1)圖象如圖所示,則a+b的值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的圖象與軸所圍成的封閉圖形的面積為     (   )
A.B.1 C.4D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時, 求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最小值;
(Ⅲ) 在(Ⅰ)的條件下,設(shè),
證明:.參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

解方程:(1)   (2)

查看答案和解析>>

同步練習(xí)冊答案