(本小題共12分)
在如圖的多面體中,
⊥平面
,
,
,
,
,
,
,
是
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
;
(Ⅰ)∵
, ∴
. 又∵
,
是
的中點, ∴
,∴四邊形
是平行四邊形,∴
. ∵
平面
,
平面
,∴
平面
.
(Ⅱ)∵
平面
,
平面
,∴
,又
,
平面
,∴
平面
.過
作
交
于
,則
平面
.∵
平面
, ∴
.∵
,∴四邊形
平行四邊形,∴
,∴
,又
,
∴四邊形
為正方形,∴
,又
平面
,
平面
,∴
⊥平面
.∵
平面
,∴
.
試題分析:(Ⅰ)證明:∵
,
∴
.
又∵
,
是
的中點,∴
,
∴四邊形
是平行四邊形,∴
.
∵
平面
,
平面
,∴
平面
.……………5分
(Ⅱ)∵
平面
,
平面
,∴
,
又
,
平面
,
∴
平面
.
過
作
交
于
,則
平面
.
∵
平面
, ∴
.
∵
,∴四邊形
平行四邊形,
∴
,
∴
,又
,
∴四邊形
為正方形,∴
,
又
平面
,
平面
,
∴
⊥平面
. ∵
平面
,∴
. ………12分
點評:高考中常考查空間中平行關系與垂直關系的證明以及幾何體體積的計算,這是高考的重點內(nèi)容.證明的關鍵是熟練掌握并靈活運用相關的判定定理與性質(zhì)定理.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
中,四邊形
是菱形,
,
為
的中點.
(1)求證:
面
; (2)求證:平面
平面
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,已知球
的面上有四點
,
平面
,
,
,則球
的體積與表面積的比為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,
是棱長為1的正方體,四棱錐
中,
平面
,
。
(Ⅰ)求證:
(Ⅱ)求直線
與平面
所成角的正切值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知正四棱錐S-ABCD的側(cè)棱長與底面邊長都相等,E是SB的中點,則AE,SD所成角的余弦值為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知兩個正四棱錐P-ABCD與Q-ABCD的高分別為1和2,AB=4.
(Ⅰ)證明PQ⊥平面ABCD;
(Ⅱ)求異面直線AQ與PB所成的角;
(Ⅲ)求點P到平面QAD的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分l2分)
如圖,在多面體ABCDEF中,ABCD為菱形,
ABC=60
,EC
面ABCD,F(xiàn)A
面ABCD,G為BF的中點,若EG//面ABCD.
(1)求證:EG
面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
下列命題:①已知直線
,若
,則
∥
;②
是異面直線,
是異面直線,則
不一定是異面直線;③過空間任一點,有且僅有一條直線和已知平面
垂直;④平面
//平面
,點
,直線
//
,則
;其中正確的命題的個數(shù)有( )
查看答案和解析>>