【題目】已知函數(shù) ,且該函數(shù)的圖象過點(1,5). (Ⅰ)求f(x)的解析式,并判斷f(x)的奇偶性;
(Ⅱ)判斷f(x)在區(qū)間(0,2)上的單調(diào)性,并用函數(shù)單調(diào)性的定義證明你的結(jié)論.
【答案】解:(Ⅰ)因為函數(shù)f(x)圖象過點(1,5),即1+ =5,解得m=4.
所以 .
因為f(x)的定義域為(∞,0)∪(0,+∞),定義域關(guān)于坐標原點對稱,
又 ,
所以函數(shù)f(x)是奇函數(shù).
(II)函數(shù)f(x)在區(qū)間(0,2)上是減函數(shù).
證明:設(shè)x1,x2∈(0,2),且x1<x2,
則
=
因為x1,x2∈(0,2),則x1x2∈(0,4),
所以 .
又因為x1<x2,所以x1x2<0,
所以 ,即f(x1)f(x2)>0.
所以f(x)在區(qū)間(0,2)上是減函數(shù).
【解析】(Ⅰ)根據(jù)條件求出m的值,結(jié)合函數(shù)奇偶性的定義進行證明即可,(Ⅱ)根據(jù)函數(shù)單調(diào)性的定義進行證明即可.
【考點精析】根據(jù)題目的已知條件,利用奇偶性與單調(diào)性的綜合的相關(guān)知識可以得到問題的答案,需要掌握奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex(2x﹣1),g(x)=ax﹣a(a∈R).
(1)若y=g(x)為曲線y=f(x)的一條切線,求a的值;
(2)已知a<1,若存在唯一的整數(shù)x0 , 使得f(x0)<g(x0),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,P,Q分別是AA1 , B1C1上的點,且AP=3A1P,B1C1=4B1Q.
(1)求證:PQ∥平面ABC1;
(2)若AB=AA1 , BC=3,AC1=3,BC1= ,求證:平面ABC1⊥平面AA1C1C.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期為π.
(1)求f( )的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2﹣2x+4y﹣4=0,是否存在斜率為1的直線l,使l被圓C截得的弦長AB為直徑的圓過原點,若存在求出直線的方程l,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在棱長為6的正方體ABCD﹣A1B1C1D1中,M是BC的中點,點P是面DCC1D1內(nèi)的動點,且滿足∠APD=∠MPC,則三棱錐P﹣BCD的體積最大值是( )
A.36
B.12
C.24
D.18
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2001年至2013年北京市電影放映場次的情況如圖所示.下列函數(shù)模型中,最不合適近似描述這13年間電影放映場次逐年變化規(guī)律的是( )
A.y=ax2+bx+c
B.y=aex+b
C.y=aax+b
D.y=alnx+b
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)y=sinx的圖象上所有的點向右平行移動 個單位長度,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數(shù)解析式是( )
A.y=sin(2x )
B.y=sin(2x )
C.y=sin( x )
D.y=sin( x )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:x∈A,且A={x|a﹣1<x<a+1},命題q:x∈B,且B={x|x2﹣4x+3≥0} (Ⅰ)若A∩B=,A∪B=R,求實數(shù)a的值;
(Ⅱ)若p是q的充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com