【題目】已知橢圓的離心率,一條準(zhǔn)線方程為

⑴求橢圓的方程;

⑵設(shè)為橢圓上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),且

①當(dāng)直線的傾斜角為時(shí),求的面積;

②是否存在以原點(diǎn)為圓心的定圓,使得該定圓始終與直線相切?若存在,請(qǐng)求出該定圓方程;若不存在,請(qǐng)說明理由.

【答案】12①SGOH②x2y2

【解析】

(1)因?yàn)?/span>,a2b2c2,

解得a3,b,所以橢圓方程為

(2)①解得

所以OG,OH,所以SGOH.

假設(shè)存在滿足條件的定圓,設(shè)圓的半徑為R,則OG·OHR·GH,

因?yàn)?/span>OG2OH2GH2,故,

當(dāng)OGOH的斜率均存在時(shí),不妨設(shè)直線OG方程為ykx,

所以OG2

同理可得OH2,(OG2中的k換成-可得),R

當(dāng)OGOH的斜率有一個(gè)不存在時(shí),可得,

故滿足條件的定圓方程為:x2y2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、是同一平面上不共線的四點(diǎn),若存在一組正實(shí)數(shù)、,使得,則三個(gè)角、、( )

A. 都是鈍角B. 至少有兩個(gè)鈍角

C. 恰有兩個(gè)鈍角D. 至多有兩個(gè)鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長(zhǎng)為2的正方體中, , 分別是棱 , , 的中點(diǎn),點(diǎn) 分別在棱, 上移動(dòng),且.

(1)當(dāng)時(shí),證明:直線平面;

(2)是否存在,使面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是由容量為100的樣本得到的頻率分布直方圖.其中前4組的頻率成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為a,在之間的數(shù)據(jù)個(gè)數(shù)為b,則a,b的值分別為(

A.,78

B.,83

C.,78

D.,83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某公園內(nèi)有兩條道路,,現(xiàn)計(jì)劃在上選擇一點(diǎn),新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知,

(1)若綠化區(qū)域的面積為1,求道路的長(zhǎng)度;

(2)若綠化區(qū)域改造成本為10萬(wàn)元/,新建道路成本為10萬(wàn)元/.設(shè)),當(dāng)為何值時(shí),該計(jì)劃所需總費(fèi)用最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面四邊形ABCD,,,,將沿BD翻折到與面BCD垂直的位置.

證明:面ABC;

若E為AD中點(diǎn),求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—5: 不等式選講

已知函數(shù)f(x) 的定義域?yàn)?/span>R.

()求實(shí)數(shù)m的取值范圍;

()m的最大值為n,當(dāng)正數(shù)a,b滿足 n時(shí),求7a4b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,假命題的是( )

A.一條直線與兩個(gè)平行平面中的一個(gè)相交,則必與另一個(gè)平面相交.

B.平行于同一平面的兩條直線一定平行.

C.如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面.

D.若直線不平行于平面,且不在平面內(nèi),則在平面內(nèi)不存在與平行的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn),定直線,動(dòng)圓經(jīng)過點(diǎn)且與直線相切.

(I)求動(dòng)圓圓心的軌跡方程;

(II)設(shè)點(diǎn)為曲線上不同的兩點(diǎn),且,過兩點(diǎn)分別作曲線的兩條切線,且二者相交于點(diǎn),求面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案