【題目】如圖,直四棱柱ABCD﹣A1B1C1D1底面是邊長(zhǎng)為1的正方形,高AA1= ,點(diǎn)A是平面α內(nèi)的一個(gè)定點(diǎn),AA1與α所成角為 ,點(diǎn)C1在平面α內(nèi)的射影為P,當(dāng)四棱柱ABCD﹣A1B1C1D1按要求運(yùn)動(dòng)時(shí)(允許四棱柱上的點(diǎn)在平面α的同側(cè)或異側(cè)),點(diǎn)P所經(jīng)過的區(qū)域的面積=

【答案】
【解析】解:當(dāng)長(zhǎng)方體繞A1A轉(zhuǎn)的時(shí)候,C1C形成一個(gè)圓柱,過C1往平面α作垂線垂足P,就形成一個(gè)橢圓,其短軸為P1P2= ,長(zhǎng)軸為 的y型的橢圓,其中心A點(diǎn)在平面α上的射影M.
當(dāng)AA1繞著A點(diǎn)轉(zhuǎn)時(shí),則橢圓就以A為圓心, 為半徑的圓上運(yùn)動(dòng),其掃過的區(qū)域?yàn)橐粋(gè)圓環(huán),外徑為 ,內(nèi)徑為 ,
所以面積為:[( 2 ]π=
故填:

【考點(diǎn)精析】利用棱柱的結(jié)構(gòu)特征對(duì)題目進(jìn)行判斷即可得到答案,需要熟知兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的定義域?yàn)?/span>D,若存在閉區(qū)間,使得函數(shù)滿足:①內(nèi)是單調(diào)函數(shù);②上的值域?yàn)?/span>,則稱區(qū)間倍值區(qū)間”.下列函數(shù)中存在倍值區(qū)間的有_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把三盆不同的蘭花和4盆不同的玫瑰花擺放在右圖圖案中的1,2,3,4,5,6,7所示的位置上,其中三盆蘭花不能放在一條直線上,則不同的擺放方法為(

A.2680種
B.4320種
C.4920種
D.5140種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用紅、黃、藍(lán)、白、黑五種顏色涂在如圖所示的四個(gè)區(qū)域內(nèi),每個(gè)區(qū)域涂一種顏色,相鄰兩個(gè)區(qū)域涂不同的顏色,五種顏色可以反復(fù)使用,共有___________種不同的涂色方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知有一個(gè)三邊長(zhǎng)分別為3,4,5的三角形.求下面兩只螞蟻與三角形三頂點(diǎn)的距離均超過1的概率.(1)一只螞蟻在三角形的邊上爬行(2)一只螞蟻在三角形所在區(qū)域內(nèi)部爬行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2﹣a|x﹣1|+b(a>0,b>﹣1)
(1)若b=0,a>2,求f(x)在區(qū)間[0,2]內(nèi)的最小值m(a);
(2)若f(x)在區(qū)間[0,2]內(nèi)不同的零點(diǎn)恰有兩個(gè),且落在區(qū)間[0,1),(1,2]內(nèi)各一個(gè),求a﹣b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c,使等式N+都成立,

(1)猜測(cè)a,b,c的值;(2)用數(shù)學(xué)歸納法證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義函數(shù)F(a,b)= (a+b﹣|a﹣b|)(a,b∈R),設(shè)函數(shù)f(x)=﹣x2+2x+4,g(x)=x+2(x∈R)函數(shù)F(f(x),g(x))的最大值與零點(diǎn)之和為(
A.4
B.6
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓: 的左右焦點(diǎn)分別 ,過作垂直于軸的直線交橢圓于兩點(diǎn),滿足.

(1)求橢圓的離心率.

(2)是橢圓短軸的兩個(gè)端點(diǎn),設(shè)點(diǎn)是橢圓上一點(diǎn)(異于橢圓的頂點(diǎn)),直線分別與軸相交于兩點(diǎn),為坐標(biāo)原點(diǎn),若,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案