【題目】已知函數(shù),.
(1)討論函數(shù)在上的單調(diào)性;
(2)當(dāng)時(shí),設(shè)為函數(shù)圖象上任意一點(diǎn).直線的斜率為,求證:.
【答案】(1)答案見解析.(2)證明見解析
【解析】
(1)由,分與兩類討論,可求得函數(shù)在上的單調(diào)區(qū)間.
(2)由已知,即證,由于,即證,①設(shè),②構(gòu)造函數(shù),利用導(dǎo)數(shù)研究這兩個(gè)函數(shù)的單調(diào)性及函數(shù)取值情況,可證結(jié)論.
(1)∵,
∴,
當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;
當(dāng)時(shí),由,得(舍負(fù))
當(dāng)時(shí),,函數(shù)單調(diào)遞減,
當(dāng)時(shí),,函數(shù)單調(diào)遞增.
(2)證明:由已知,即證.
∵,
∴即證,
①設(shè),
∴, ∴,
∵,
∴,∴為增函數(shù)
∴, ∴為增函數(shù)
∴,
∴,
即,即,
∴,即,
②構(gòu)造函數(shù),
∵,
, ∴,
∴在上為減函數(shù),
∴,∴在上為減函數(shù),∴,
∴,
∴,即成立.
由①②可知, ∴成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年是新中國成立七十周年,新中國成立以來,我國文化事業(yè)得到了充分發(fā)展,尤其是黨的十八大以來,文化事業(yè)發(fā)展更加迅速,下圖是從2013 年到 2018 年六年間我國公共圖書館業(yè)機(jī)構(gòu)數(shù)(個(gè))與對應(yīng)年份編號(hào)的散點(diǎn)圖(為便于計(jì)算,將 2013 年編號(hào)為 1,2014 年編號(hào)為 2,…,2018年編號(hào)為 6,把每年的公共圖書館業(yè)機(jī)構(gòu)個(gè)數(shù)作為因變量,把年份編號(hào)從 1 到 6 作為自變量進(jìn)行回歸分析),得到回歸直線,其相關(guān)指數(shù),給出下列結(jié)論,其中正確的個(gè)數(shù)是( )
①公共圖書館業(yè)機(jī)構(gòu)數(shù)與年份的正相關(guān)性較強(qiáng)
②公共圖書館業(yè)機(jī)構(gòu)數(shù)平均每年增加13.743個(gè)
③可預(yù)測 2019 年公共圖書館業(yè)機(jī)構(gòu)數(shù)約為3192個(gè)
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以下三視圖中有三個(gè)同時(shí)表示某一個(gè)三棱錐,則不是該三棱錐的三視圖是 ( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面的莖葉圖記錄了甲、乙兩代表隊(duì)各10名同學(xué)在一次英語聽力比賽中的成績(單位:分).已知甲代表隊(duì)數(shù)據(jù)的中位數(shù)為76,乙代表隊(duì)數(shù)據(jù)的平均數(shù)是75.
(1)求,的值;
(2)若分別從甲、乙兩隊(duì)隨機(jī)各抽取1名成績不低于80分的學(xué)生,求抽到的學(xué)生中,甲隊(duì)學(xué)生成績不低于乙隊(duì)學(xué)生成績的概率;
(3)判斷甲、乙兩隊(duì)誰的成績更穩(wěn)定,并說明理由(方差較小者穩(wěn)定).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線:(,為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線:.
(1)說明是哪一種曲線,并將的方程化為極坐標(biāo)方程;
(2)若直線的方程為,設(shè)與的交點(diǎn)為,,與的交點(diǎn)為,,若的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動(dòng)圓過定點(diǎn),且在軸上截得的弦的長為4.
(1)若動(dòng)圓圓心的軌跡為曲線,求曲線的方程;
(2)在曲線的對稱軸上是否存在點(diǎn),使過點(diǎn)的直線與曲線的交點(diǎn)滿足為定值?若存在,求出點(diǎn)的坐標(biāo)及定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程 =k在(0,+∞)上有兩個(gè)不同的解α,β(α<β),則下列的四個(gè)命題正確的是( )
A. sin 2α=2αcos2α B. cos 2α=2αsin2α
C. sin 2β=-2βsin2β D. cos 2β=-2βsin2β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、分別是離心率的橢圓的左右項(xiàng)點(diǎn),P是橢圓E的上頂點(diǎn),且.
(1)求橢圓E的方程;
(2)若動(dòng)直線過點(diǎn),且與橢圓E交于A、B兩點(diǎn),點(diǎn)M與點(diǎn)B關(guān)于y軸對稱,求證:直線恒過定點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com