【題目】已知命題:函數(shù),命題:集合,.

1)若命題中有且僅有一個(gè)為真命題,求實(shí)數(shù)的取值范圍;

2)設(shè)皆為真命題時(shí),的取值范圍為集合,已知,若,求的取值范圍.

【答案】1;(2

【解析】

由題意可得,由為真命題時(shí),,當(dāng)為真命題時(shí),;

1)當(dāng)為真命題,為假命題時(shí),;當(dāng)為真命題,為假命題時(shí),則,求兩種情況并集即可;

2)當(dāng)都為真時(shí),可得,利用基本不等式可求集合,進(jìn)而可求,然后根據(jù),即可求出結(jié)果.

由題意可得,由,可得解可得,;

所以為真命題時(shí),;

∵集合,,

①若,則,即;

②若,則,解可得,

綜上可得,,即為真命題時(shí),;

1)因?yàn)槊}中有且僅有一個(gè)為真命題

當(dāng)為真命題,為假命題時(shí),則,;

當(dāng)為真命題,為假命題時(shí),則,;

綜上;

2)當(dāng)都為真時(shí),即,即

,所以

,以,即;

綜上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為多面體,平面與平面垂直,點(diǎn)在線段上, 都是正三角形.

(1)證明:直線∥面;

(2)在線段上是否存在一點(diǎn),使得二面角的余弦值是,若不存在請(qǐng)說(shuō)明理由,若存在請(qǐng)求出點(diǎn)所在的位置。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次數(shù)學(xué)測(cè)驗(yàn)共有12道選擇題,每道題共有四個(gè)選項(xiàng),且其中只有一個(gè)選項(xiàng)是正確的,評(píng)分標(biāo)準(zhǔn)規(guī)定:每選對(duì)1道題得5分,不選或選錯(cuò)得0分. 在這次數(shù)學(xué)測(cè)驗(yàn)中,考生甲每道選擇題都按照規(guī)則作答,并能確定其中有9道題能選對(duì);其余3道題無(wú)法確定正確選項(xiàng),在這3道題中,恰有2道能排除兩個(gè)錯(cuò)誤選項(xiàng),另1題只能排除一個(gè)錯(cuò)誤選項(xiàng). 若考生甲做這3道題時(shí),每道題都從不能排除的選項(xiàng)中隨機(jī)挑選一個(gè)選項(xiàng)作答,且各題作答互不影響.在本次測(cè)驗(yàn)中,考生甲選擇題所得的分?jǐn)?shù)記為

1)求的概率;

2)求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)上的最大值為,.

1)若點(diǎn)的圖象上,求函數(shù)圖象的對(duì)稱中心;

2)將函數(shù)的圖象向右平移個(gè)單位,再將所得的圖象縱坐標(biāo)不變,橫坐標(biāo)縮小到原來(lái)的,得函數(shù)的圖象,若上為增函數(shù),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在空間直角坐標(biāo)系Oxyz中,已知正四棱錐PABCD的所有棱長(zhǎng)均為6,底面正方形ABCD的中心在坐標(biāo)原點(diǎn),棱ADBC平行于x軸,AB,CD平行于y軸,頂點(diǎn)Pz軸的正半軸上,點(diǎn)M,N分別在線段PA,BD上,且

1)求直線MNPC所成角的大;

2)求銳二面角APND的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且與雙曲線有相同的焦點(diǎn).

1)求橢圓的方程;

2)直線與橢圓相交于兩點(diǎn),點(diǎn)滿足,點(diǎn),若直線斜率為,求面積的最大值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若,用“五點(diǎn)法”在給定的坐標(biāo)系中,畫(huà)出函數(shù)[0,π]上的圖象.

(2)若偶函數(shù),求

(3)在(2)的前提下,將函數(shù)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20191216日,公安部聯(lián)合阿里巴巴推出的“錢盾反詐機(jī)器人”正式上線,當(dāng)普通民眾接到電信網(wǎng)絡(luò)詐騙電話,公安部錢盾反詐預(yù)警系統(tǒng)預(yù)警到這一信息后,錢盾反詐機(jī)器人即自動(dòng)撥打潛在受害人的電話予以提醒,來(lái)電信息顯示為“公安反詐專號(hào)”.某法制自媒體通過(guò)自媒體調(diào)查民眾對(duì)這一信息的了解程度,從5000多參與調(diào)查者中隨機(jī)抽取200個(gè)樣本進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):男性不了解這一信息的有50人,了解這一信息的有80人,女性了解這一信息的有40.

1)完成下列列聯(lián)表,問(wèn):能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為200個(gè)參與調(diào)查者是否了解這一信息與性別有關(guān)?

了解

不了解

合計(jì)

男性

女性

合計(jì)

2)該自媒體對(duì)200個(gè)樣本中了解這一信息的調(diào)查者按照性別分組,用分層抽樣的方法抽取6人,再?gòu)倪@6人中隨機(jī)抽取3人給予一等獎(jiǎng),另外3人給予二等獎(jiǎng),求一等獎(jiǎng)與二等獎(jiǎng)獲得者都有女性的概率.

附:

P(K2k)

0.01

0.005

0.001

k

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,直線.

(1)若拋物線和直線沒(méi)有公共點(diǎn),求的取值范圍;

(2)若,且拋物線和直線只有一個(gè)公共點(diǎn)時(shí),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案