.設,分別為具有公共焦點的橢圓和雙曲線的離心率,為兩曲線的一個公共點,且滿足,則的值為
A.B.1C.2D.不確定
C
設橢圓和雙曲線的方程為:=1(m>n>0)和=1(a>0,b>0).由題設條件可知 |PF1|+|PF2|=2,|PF1|-|PF2|=2,結(jié)合=0,由此可以求出的值.
解:設橢圓和雙曲線的方程為:=1(m>n>0)和=1(a>0,b>0).

∵|PF1|+|PF2|=2,|PF1|-|PF2|=2,
∴|PF1| =+,|PF2|=-,
∵滿足=0,
∴△PF1F2是直角三角形,
∴|PF1|2+|PF2|2=4c2
即m+a=2c2
===
故選C.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

.如圖,在平面直角坐標系中,,,,,設的外接圓圓心為E.

(1)若⊙E與直線CD相切,求實數(shù)a的值;
(2)設點在圓上,使的面積等于12的點有且只有三個,試問這樣的⊙E是否存在,若存在,求出⊙E的標準方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
在平面直角坐標系中,已知動點到點的距離為,到軸的距離為,且
(I)求點的軌跡的方程;
(Ⅱ)若、是(I)中上的兩點,,過、分別作直線的垂線,垂足分別為.證明:直線過定點,且為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分)如圖,在直角坐標系中,三點在軸上,原點和點分別是線段的中點,已知為常數(shù)),平面上的點滿。

(1)試求點的軌跡的方程;
(2)若點在曲線上,求證:點一定在某圓上;
(3)過點作直線,與圓相交于兩點,若點恰好是線段的中點,試求直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(本小題滿分10分)
已知動圓過點且與直線相切.

(1)求點的軌跡的方程;
(2)過點作一條直線交軌跡兩點,軌跡兩點處的切線相交于點,為線段的中點,求證:軸.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知,直線,為平面上的動點,過點的垂線,垂足為點,且
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點的直線交軌跡點,交直線于點
(1)已知,,求的值;
(2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題14分) 設直線(其中,為整數(shù))與橢圓交于不同兩點,,與雙曲線交于不同兩點,,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)點M到點F(2,0)的距離比它到直線的距離小1,求點M滿足的方程。
(2)曲線上點M(x,y)到定點F(2,0)的距離和它到定直線x=8的距離比是常數(shù)2,求曲線方程。

查看答案和解析>>

同步練習冊答案