【題目】如圖1,在正方形中,點分別是的中點,與交于點,點分別在線段上,且.將分別沿折起,使點重合于點,如圖2所示.
(1)求證:平面;
(2)若正方形的邊長為4,求三棱錐的內(nèi)切球的半徑.
【答案】(1)詳見解析;(2).
【解析】
試題分析:(1)因為點重合于點(該點記為),由原圖可知,三條直線兩兩垂直,那么平面,又根據(jù)圖中給的比例關(guān)系,可知,根據(jù)平行關(guān)系可知,平行線與同一平面垂直,即證明;(2)因為內(nèi)切球的球心到三棱錐的四個面的距離相等,所以可將三棱錐的體積分為四個小三棱錐的體積和,而每一個小三棱錐的高就是內(nèi)切球的半徑,這樣根據(jù)體積和可求得內(nèi)切球的半徑.
試題解析:(1)在正方形中,為直角,
∴在三棱錐中,三條線段兩兩垂直...................2分
∴平面...........................3分
∵,即,∴在中,...............4分
∴平面....................6分
(2)正方形邊長為4.
由題意,...................7分
∴.
..................10分
設(shè)三棱錐內(nèi)切球半徑為.
則三棱錐的體積
∴.
∴三棱錐的內(nèi)切球的半徑為.....................12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)).
(1)當(dāng)時,求曲線在點處的切線方程;
(2)設(shè),若對任意的,存在使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的離心率為,圓心在軸的正半軸上的圓與雙曲線的漸近線相切,且圓的半徑為2,則以圓的圓心為焦點的拋物線的標(biāo)準方程為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x=1是函數(shù)f(x)=ax3-x2+(a+1)x+5的一個極值點.
(1)求函數(shù)f(x)的解析式;
(2)若曲線y=f(x)與直線y=2x+m有三個交點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中,平面平面,四邊形為菱形,且, , ∥, 為中點.
(Ⅰ)求證: ∥平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在棱上是否存在點,使 ? 若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), = .
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)有兩個零點.
(1)求滿足條件的最小正整數(shù)的值;
(2)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過原點的動直線l與圓相交于不同的兩點A,B.
(1)求線段AB的中點M的軌跡C的方程;
(2)是否存在實數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,前n項和為,是首項為2的等比數(shù)列,且公比大于0,,,.
(1)求和的通項公式;
(2)求數(shù)列的前n項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com