如圖,在三棱錐P-ABC中,PA⊥底面ABC,D是PC的中點(diǎn),已知∠BAC=,AB=2,AC=2,PA=2,求:

(1)三棱錐P-ABC的體積;

(2)異面直線BC與AD所成的角的大小(結(jié)果用反三角函數(shù)值表示).

答案:
解析:


提示:

本題主要考查直線與直線、直線與平面的位置關(guān)系,考查空間想象能力和推理論證能力.綜合考查空間中兩條異面直線所成的角的求解,同時(shí)考查空間幾何體的體積公式的運(yùn)用.本題源于《必修2》立體幾何章節(jié)復(fù)習(xí)題,復(fù)習(xí)時(shí)應(yīng)注重課本,容易出現(xiàn)找錯(cuò)角的情況,要考慮全面,考查空間想象能力,屬于中檔題.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、如圖,在三棱錐P-ABC中,已知PC⊥BC,PC⊥AC,點(diǎn)E,F(xiàn),G分別是所在棱的中點(diǎn),則下面結(jié)論中錯(cuò)誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,AB=AC,D為BC的中點(diǎn),PO⊥平面ABC,垂足O落在線段AD上,已知BC=8,PO=4,AO=3,OD=2
(Ⅰ)證明:AP⊥BC;
(Ⅱ)在線段AP上是否存在點(diǎn)M,使得二面角A-MC-β為直二面角?若存在,求出AM的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,PA,PB,PC兩兩垂直,且PA=5,PB=4,PC=3.設(shè)點(diǎn)M為底面ABC內(nèi)一點(diǎn),定義f(M)=(m,n,p),其中m,n,p分別為三棱錐M-PAB、M-PBC、M-PCA的體積.若f(M)=(4,3x,3y),且ax-8xy+y≥0恒成立,則正實(shí)數(shù)a的取值范圍是
[9,+∞)
[9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=kPA,點(diǎn)O、D分別是AC、PC的中點(diǎn),OP⊥底面ABC.
(Ⅰ)求證:OD∥平面PAB;
(Ⅱ)當(dāng)k=
1
2
時(shí),求直線PA與平面PBC所成角的正弦值;
(Ⅲ)當(dāng)k取何值時(shí),O在平面PBC內(nèi)的射影恰好為△PBC的重心?
(注:若△ABC的三點(diǎn)坐標(biāo)分別為A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3),則該三角形的重心坐標(biāo)為:(
x1+x2+x3
3
,
y1+y2+y3
3
,
z1+z2+z3
3
)
.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•莆田模擬)如圖,在三棱錐P-ABC中,△PAC,△ABC分別是以A、B為直角頂點(diǎn)的等腰直角三角形,AB=1.
(1)現(xiàn)給出三個(gè)條件:①PB=
3
;②PB⊥BC;③平面PAB⊥平面ABC.試從中任意選取一個(gè)作為已知條件,并證明:PA⊥平面ABC;
(2)在(1)的條件下,求三棱錐P-ABC的體積.

查看答案和解析>>

同步練習(xí)冊答案