【題目】近年來,空氣質(zhì)量成為人們越來越關(guān)注的話題,空氣質(zhì)量指數(shù)(,簡稱)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照大小分為六級, 為優(yōu); 為良; 為輕度污染; 為中度污染; 為重度污染;大于300為嚴重污染.環(huán)保部門記錄了2017年某月哈爾濱市10天的的莖葉圖如下:
(1)利用該樣本估計該地本月空氣質(zhì)量優(yōu)良()的天數(shù);(按這個月總共30天計算)
(2)現(xiàn)工作人員從這10天中空氣質(zhì)量為優(yōu)良的日子里隨機抽取2天進行某項研究,求抽取的2天中至少有一天空氣質(zhì)量是優(yōu)的概率;
(3)將頻率視為概率,從本月中隨機抽取3天,記空氣質(zhì)量優(yōu)良的天數(shù)為,求的概率分布列和數(shù)學(xué)期望.
【答案】(1)18(2) (3)
【解析】試題分析:(1)從莖葉圖中可知樣本中空氣質(zhì)量優(yōu)良的頻率為,從而估計該月空氣質(zhì)量優(yōu)良的天數(shù)為(2)“至少”可以從對立事件考慮,即一天空氣質(zhì)量優(yōu)都沒有。(3)顯然是二項分布
試題解析:(1)從莖葉圖中可發(fā)現(xiàn)該樣本中空氣質(zhì)量優(yōu)的天數(shù)為2,空氣質(zhì)量良的天數(shù)為4,
故該樣本中空氣質(zhì)量優(yōu)良的頻率為,從而估計該月空氣質(zhì)量優(yōu)良的天數(shù)為
(2)由題意可知,10天中有6天是優(yōu)良,其中2天優(yōu),所以
(3)由(1)估計某天空氣質(zhì)量優(yōu)良的概率為, 的所有可能取值為0,1,2,3
, ,
,
故的分布列為:
顯然, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義域為R的偶函數(shù),當x≥0時,f(x)= ,若關(guān)于x的方程[f(x)]2+af(x)+ =0,a∈R有且僅有8個不同實數(shù)根,則實數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一家公司計劃生產(chǎn)某種小型產(chǎn)品的月固定成本為1萬元,每生產(chǎn)1萬件需要再投入2萬元,設(shè)該公司一個月內(nèi)生產(chǎn)該小型產(chǎn)品x萬件并全部銷售完,每萬件的銷售收入為4﹣x萬元,且每萬件國家給予補助2e﹣ ﹣ 萬元.(e為自然對數(shù)的底數(shù),e是一個常數(shù))
(1)寫出月利潤f(x)(萬元)關(guān)于月產(chǎn)量x(萬件)的函數(shù)解析式
(2)當月產(chǎn)量在[1,2e]萬件時,求該公司在生產(chǎn)這種小型產(chǎn)品中所獲得的月利潤最大值(萬元)及此時的月生成量值(萬件).(注:月利潤=月銷售收入+月國家補助﹣月總成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+(1﹣a) x2﹣a(a+2)x+b(a,b∈R).
(1)若函數(shù)f(x)的圖象過原點,且在原點處的切線斜率是﹣3,求a,b的值;
(2)若函數(shù)f(x)在區(qū)間(﹣1,1)上不單調(diào),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2﹣2tx+2,其中 t∈R.
(1)若t=1,求函數(shù)f(x)在區(qū)間[0,4]上的取值范圍;
(2)若t=1,且對任意的x∈[a,a+2],都有f(x)<5,求實數(shù)a的取值范圍;
(3)若對任意的x1 , x2∈[0,4],都有f(x1)﹣f(x2)≤8,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游景區(qū)的景點A處和B處之間有兩種到達方式,一種是沿直線步行,另一種是沿索道乘坐纜車,現(xiàn)有一名游客從A處出發(fā),以50m/min的速度勻速步行,30min后到達B處,在B處停留20min后,再乘坐纜車回到A處.假設(shè)纜車勻速直線運動的速度為150m/mm.
(1)求該游客離景點A的距離y(m)關(guān)于出發(fā)后的時間x(mm)的函數(shù)解析式,并指出該函數(shù)的定義域;
(2)做出(1)中函數(shù)的圖象,并求該游客離景點A的距離不小于1000m的總時長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 a∈R,函數(shù) f(x)=a﹣ .
(1)證明:f(x)在(﹣∞,+∞)上單調(diào)遞增;
(2)若f(x)為奇函數(shù),求:
①a的值;
②f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) ,且其圖象關(guān)于直線x=0對稱,則( )
A.y=f(x)的最小正周期為π,且在(0, )上為增函數(shù)
B.y=f(x)的最小正周期為π,且在(0, )上為減函數(shù)
C.y=f(x)的最小正周期為 ,且在 上為增函數(shù)
D.y=f(x)的最小正周期為 ,且在 上為減函數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com