(滿分14分)一個(gè)同心圓形花壇,分為兩部分,中間小圓部分種植草坪和綠色灌木,周?chē)膱A環(huán)分為n(n≥3,n∈N)等份,種植紅、黃、藍(lán)三色不同的花,要求相鄰兩部分種植不同顏色的花.

   (1)如圖1,圓環(huán)分成的3等份為a1,a2,a3,有多少不同的種植方法?如圖2,圓環(huán)分成的4等份為a1,a2,a3,a4,有多少不同的種植方法?

   (2)如圖3,圓環(huán)分成的n等份為a1,a2,a3,……,an,有多少不同的種植方法?

 
 


[來(lái)源:學(xué)#科#網(wǎng)Z#X#X#K]

(1)18     (2)


解析:

(1)如圖1,先對(duì)a1部分種植,有3種不同的種法,再對(duì)a2、a3種植,

因?yàn)閍2、a3a1不同顏色,a2、a3也不同.

所以S(3)=3×2=6(種)……………3分

如圖2,S(4)=3×2×2×2-S(3)=18(種)       ……………………………6分

   (2)如圖3,圓環(huán)分為n等份,對(duì)a1有3種不同的種法,對(duì)a2、a3、…、an都有兩種不同的種法,但這樣的種法只能保證a1與ai(i=2、3、……、n-1)不同顏色,但不能保證a1與an不同顏色.                        ………………………………8

于是一類(lèi)是an與a1不同色的種法,這是符合要求的種法,記為種.另一類(lèi)是an與a1同色的種法,這時(shí)可以把a(bǔ)n與a1看成一部分,這樣的種法相當(dāng)于對(duì)n-1部分符合要求的種法,記為

共有3×2n1種種法.                ………………………………10分

這樣就有.即

則數(shù)列是首項(xiàng)為公比為-1的等比數(shù)列.

由⑴知:,∴

.              ………………………………13分[來(lái)源:學(xué)*科*網(wǎng)]

答:符合要求的不同種法有…………………14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市徐匯區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.

(理)某種型號(hào)汽車(chē)四個(gè)輪胎半徑相同,均為,同側(cè)前后兩輪胎之間的距離(指輪胎中心之間距離)為 (假定四個(gè)輪胎中心構(gòu)成一個(gè)矩形). 當(dāng)該型號(hào)汽車(chē)開(kāi)上一段上坡路(如圖(1)所示,其中()),且前輪已在段上時(shí),后輪中心在位置;若前輪中心到達(dá)處時(shí),后輪中心在處(假定該汽車(chē)能順利駛上該上坡路). 設(shè)前輪中心在處時(shí)與地面的接觸點(diǎn)分別為,且,. (其它因素忽略不計(jì))

(1)如圖(2)所示,的延長(zhǎng)線交于點(diǎn),

求證:(cm);

(2)當(dāng)=時(shí),后輪中心從處移動(dòng)到處實(shí)際移動(dòng)了多少厘米? (精確到1cm)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市高三第二次教學(xué)質(zhì)量考試數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)

如圖1,在平面內(nèi),ABCD是的菱形,ADD``A1和CD D`C1都是正方形.將兩個(gè)正方形分別沿AD,CD折起,使D``與D`重合于點(diǎn)D1 .設(shè)直線l過(guò)點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè)(圖2).

  

(Ⅰ) 設(shè)二面角E – AC – D1的大小為q,若£ q £ ,求線段BE長(zhǎng)的取值范圍;

(Ⅱ)在線段上存在點(diǎn),使平面平面,求與BE之間滿足的關(guān)系式,并證明:當(dāng)0 < BE < a時(shí),恒有< 1.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分14分) 現(xiàn)有一個(gè)放有9個(gè)球的袋子,其中紅球4個(gè),白球3個(gè),黃球2個(gè),并且這些球除顏色外完全相同.

(Ⅰ) 現(xiàn)從袋子里任意摸出3個(gè)球,求其中有兩球同色的概率;

(Ⅱ) 若在袋子里任意摸球,取后不放回,每次只摸出一球,直到摸出有兩球同色為止,求摸球次數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分14分)

如圖,在一條筆直的高速公路的同旁有兩個(gè)城鎮(zhèn),它們與的距離分別是上的射影之間距離為,現(xiàn)計(jì)劃修普通公路把這兩個(gè)城鎮(zhèn)與高速公路相連接,若普通公路造價(jià)為萬(wàn)元/;而每個(gè)與高速公路連接的立交出入口修建費(fèi)用為萬(wàn)元.設(shè)計(jì)部門(mén)提交了以下三種修路方案:

方案①:兩城鎮(zhèn)各修一條普通公路到高速公路,并各修一個(gè)立交出入口;

方案②:兩城鎮(zhèn)各修一條普通公路到高速公路上某一點(diǎn),并

點(diǎn)修一個(gè)公共立交出入口;

方案③:從修一條普通公路到,再?gòu)?img width=16 height=17 src="http://thumb.zyjl.cn/pic1/0688/261/97261.gif" >修一條普通公路到

高速公路,也只修一個(gè)立交出入口.

請(qǐng)你為這兩個(gè)城鎮(zhèn)選擇一個(gè)省錢(qián)的修路方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分14分)

如圖1,在平面內(nèi),ABCD是的菱形,ADD``A1和CD D`C1都是正方形.將兩個(gè)正方形分別沿AD,CD折起,使D``與D`重合于點(diǎn)D1 .設(shè)直線l過(guò)點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè)(圖2).

 (Ⅰ) 設(shè)二面角E – AC – D1的大小為q,若£ q £ ,求線段BE長(zhǎng)的取值范圍;

(第20題–1)

(第20題–2)

(Ⅱ)在線段上存在點(diǎn),使平面平面,求與BE之間滿足的關(guān)系式,并證明:當(dāng)0 < BE < a時(shí),恒有< 1.

查看答案和解析>>

同步練習(xí)冊(cè)答案