下列命題:①若共線,則存在唯一的實(shí)數(shù),使=;
②空間中,向量、、共面,則它們所在直線也共面;
③P是△ABC所在平面外一點(diǎn),O是點(diǎn)P在平面上的射影.若PA、PB、PC兩兩垂直,則O是△ABC垂心.
④若三點(diǎn)不共線,是平面外一點(diǎn).,則點(diǎn)一定在平面上,且在△ABC內(nèi)部,上述命題中正確的命題是                  
③④
本試題主要是考查了平面向量的概念和空間向量的基本定理的運(yùn)用。
因?yàn)?br />①若共線,則存在唯一的實(shí)數(shù),使=;當(dāng)不為零向量時(shí)成立。
②空間中,向量、共面,則它們所在直線也共面;也可能一條平行于另外兩個(gè)向量確定的平面,因此說(shuō)不成立。
③P是△ABC所在平面外一點(diǎn),O是點(diǎn)P在平面上的射影.若PA、PB、PC兩兩垂直,則O是△ABC垂心.成立。
④若三點(diǎn)不共線,是平面外一點(diǎn).,則點(diǎn)一定在平面上,且在△ABC內(nèi)部,成立故正確的命題是③④
解決該試題的關(guān)鍵是理解平面向量的共線的運(yùn)用,和空間向量中共面的判定。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若向量=(1,2),=(3,4),則等于(  )
A.(4,6)B.(-4,-6)
C.(-2,-2)D.(2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在ΔABC中,,若點(diǎn)D滿足,則(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)向量,,且,則等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線上三點(diǎn),且點(diǎn)的比為,那么點(diǎn)的比為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,平行四邊形ABCD中,=a,=b,H、MAD、DC之中點(diǎn),F使BFBC,(1)以a、b為基底表示向量;(2)若|a|=3,|b|=4,a與b的夾角為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知向量,若//,則實(shí)數(shù)等于            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知:如圖, 的夾角為,的夾角為,若 ()則等于               (    )
  
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

給出下面四個(gè)命題:①;;②;③ ;
.其中正確的個(gè)數(shù)為(   )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案