極坐標(biāo)系與直角坐標(biāo)系有相同的長度單位,以原點(diǎn)為極點(diǎn),以正半軸為極軸,已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程是為參數(shù),,射線與曲線交于極點(diǎn)外的三點(diǎn)
(Ⅰ)求證:;
(Ⅱ)當(dāng)時(shí),兩點(diǎn)在曲線上,求的值.
(Ⅰ)用坐標(biāo)法證明  (Ⅱ) 

試題分析:(1)設(shè)點(diǎn)的極坐標(biāo)分別為
∵點(diǎn)在曲線上,∴
= 
, 所以 
(2)由曲線的參數(shù)方程知曲線為傾斜角為且過定點(diǎn)的直線,
當(dāng)時(shí),B,C點(diǎn)的極坐標(biāo)分別為
化為直角坐標(biāo)為,
∵直線斜率為, ∴
直線BC的普通方程為, ∵過點(diǎn),
,解得      
點(diǎn)評:本題考查了極坐標(biāo)方程、直角坐標(biāo)方程的轉(zhuǎn)化,參數(shù)方程中參數(shù)的意義,考查了方程思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,設(shè)點(diǎn)),直線:,點(diǎn)在直線上移動(dòng),是線段軸的交點(diǎn), 過、分別作直線、,使 .

(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)在直線上任取一點(diǎn)做曲線的兩條切線,設(shè)切點(diǎn)為、,求證:直線恒過一定點(diǎn);
(3)對(2)求證:當(dāng)直線的斜率存在時(shí),直線的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知分別為雙曲線a>0,b>0)的左、右焦點(diǎn),為雙曲線左支上的任意一點(diǎn),若的最小值為,則雙曲線離心率的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù))。
若以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(其中為常數(shù))
(1)當(dāng)時(shí),曲線與曲線有兩個(gè)交點(diǎn).求的值;
(2)若曲線與曲線只有一個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)F是橢圓的一個(gè)焦點(diǎn),且它們的交點(diǎn)M到F的距離為,則橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

我們把焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對“相關(guān)曲線”.已知、是一對相關(guān)曲線的焦點(diǎn),是它們在第一象限的交點(diǎn),當(dāng)時(shí),這一對相關(guān)曲線中雙曲線的離心率是( 。
                                     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)P是以F1、F2為焦點(diǎn)的橢圓上一點(diǎn),且則該橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線,直線與該雙曲線只有一個(gè)公共點(diǎn),
k =                .(寫出所有可能的取值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)軸上,準(zhǔn)線與圓相切.

(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線交于點(diǎn),命題P:“若直線過定點(diǎn),則”,請判斷命題P的真假,并證明。

查看答案和解析>>

同步練習(xí)冊答案