【題目】以直角坐標(biāo)系xOy的坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程是,曲線C2的參數(shù)方程是(θ為參數(shù))

(1)寫出曲線C1,C2的普通方程;

(2)設(shè)曲線C1y軸相交于A,B兩點(diǎn),點(diǎn)P為曲線C2上任一點(diǎn),求|PA|2|PB|2的取值范圍.

【答案】(1) 曲線C1的普通方程為.曲線C2的普通方程為(x2)2(y2)24.(2) [32163216]

【解析】

1)由題得,再把極坐標(biāo)化成直角坐標(biāo),得到C1的普通方程;消參得到C2的普通方程;(2)設(shè)P(22cosθ,22sinθ),求出|PA|2|PB|2

,再求其取值范圍.

(1),得.

,4ρ2cos2θ9ρ2sin2θ36.4x29y236,

即曲線C1的普通方程為.

曲線C2的普通方程為(x2)2(y2)24.

(2)(1)知,點(diǎn)A,B的坐標(biāo)分別為(0,2),(0,-2),設(shè)P(22cosθ,22sinθ),

|PA|2|PB|2(22cosθ)2(2sinθ)2(22cosθ)2(42sinθ)23216sinθ16cosθ.

|PA|2|PB|2[32163216],

|PA|2|PB|2的取值范圍是[3216,3216]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex(x﹣a)2+4.

(1)若f(x)在(﹣∞,+∞)上單調(diào)遞增,求a的取值范圍;

(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】箱子里有16張撲克牌:紅桃、、4,黑桃、8、7、4、3、2,草花、、6、5、4,方塊、5,老師從這16張牌中挑出一張牌來,并把這張牌的點(diǎn)數(shù)告訴了學(xué)生甲,把這張牌的花色告訴了學(xué)生乙,這時,老師問學(xué)生甲和學(xué)生乙:你們能從已知的點(diǎn)數(shù)或花色中推知這張牌是什么牌嗎?于是,老師聽到了如下的對話:學(xué)生甲:我不知道這張牌;學(xué)生乙:我知道你不知道這張牌;學(xué)生甲:現(xiàn)在我知道這張牌了;學(xué)生乙:我也知道了.則這張牌是( )

A. 草花5B. 紅桃

C. 紅桃4D. 方塊5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為4的正方形ABCD所在平面與正△PAD所在平面互相垂直,M,Q分別為PC,AD的中點(diǎn).

(1)求證:PA//平面MBD.

(2)試問:在線段AB上是否存在一點(diǎn)N,使得平面PCN⊥平面PQB?若存在,試指出點(diǎn)N的位置,并證明你的結(jié)論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右兩個焦點(diǎn)分別為,P是橢圓上位于第一象限內(nèi)的點(diǎn),軸,垂足為Q,的面積為.

1)求橢圓F的方程:

2)若M是橢圓上的動點(diǎn),求的最大值,并求出取得最大值時M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年中秋節(jié)到來之際,某超市為了解中秋節(jié)期間月餅的銷售量,對其所在銷售范圍內(nèi)的1000名消費(fèi)者在中秋節(jié)期間的月餅購買量單位:進(jìn)行了問卷調(diào)查,得到如下頻率分布直方圖:

求頻率分布直方圖中a的值;

以頻率作為概率,試求消費(fèi)者月餅購買量在的概率;

已知該超市所在銷售范圍內(nèi)有20萬人,并且該超市每年的銷售份額約占該市場總量的,請根據(jù)這1000名消費(fèi)者的人均月餅購買量估計該超市應(yīng)準(zhǔn)備多少噸月餅恰好能滿足市場需求頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與橢圓交于兩點(diǎn),且(其中為坐標(biāo)原點(diǎn)),若橢圓的離心率滿足,則橢圓長軸的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列滿足:對任意,都有,則稱緊密數(shù)列.

(1)設(shè)某個數(shù)列為緊密數(shù)列,其前項依次為,求的取值范圍;

(2)若數(shù)列的前項和,判斷是否為緊密數(shù)列,并說明理由;

(3)設(shè)是公比為的等比數(shù)列,前項和為,且均為緊密數(shù)列,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù)x,y滿足約束條件若目標(biāo)函數(shù)zyax(a≠0)取得最大值時的最優(yōu)解有無數(shù)個,則a的值為(

A.2B.1

C.12D.1

查看答案和解析>>

同步練習(xí)冊答案