已知5只動(dòng)物中有1只患有某種疾病,需要通過(guò)化驗(yàn)血液來(lái)確定患病的動(dòng)物.血液化驗(yàn)結(jié)果呈陽(yáng)性的即為患病動(dòng)物,呈陰性即沒(méi)患。旅媸莾煞N化驗(yàn)方法:
方案甲:逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止.
方案乙:先任取3只,將它們的血液混在一起化驗(yàn).若結(jié)果呈陽(yáng)性則表明患病動(dòng)物為這3只中的1只,然后再逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止;若結(jié)果呈陰性則在另外2只中任取1只化驗(yàn).
(Ⅰ)求依方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)的概率;
(Ⅱ)ξ表示依方案乙所需化驗(yàn)次數(shù),求ξ的期望.
分析:(1)由題意得到這兩種方案的化驗(yàn)次數(shù),算出在各個(gè)次數(shù)下的概率,寫出化驗(yàn)次數(shù)的分布列,求出方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)的概率.
(2)根據(jù)上一問(wèn)乙的化驗(yàn)次數(shù)的分布列,利用期望計(jì)算公式得到結(jié)果.
解答:解:(Ⅰ)若乙驗(yàn)兩次時(shí),有兩種可能:
①先驗(yàn)三只結(jié)果為陽(yáng)性,再?gòu)闹兄饌(gè)驗(yàn)時(shí),恰好一次驗(yàn)中概率為:
C
2
4
A
3
3
A
3
5
 ×
1
A
1
3
 =
6×6
3×4×5
×
1
3
=
1
5

②先驗(yàn)三只結(jié)果為陰性,再?gòu)钠渌鼉芍恢序?yàn)出陽(yáng)性(無(wú)論第二次試驗(yàn)中有沒(méi)有,均可以在第二次結(jié)束)
A
3
4
A
3
5
A
1
2
A
2
2
=
24
5×3×4
=
2
5

∴乙只用兩次的概率為
1
5
+
2
5
=
3
5

若乙驗(yàn)三次時(shí),只有一種可能:
先驗(yàn)三只結(jié)果為陽(yáng)性,再?gòu)闹兄饌(gè)驗(yàn)時(shí),恰好二次驗(yàn)中概率為在三次驗(yàn)出時(shí)概率為
2
5

∴甲種方案的次數(shù)不少于乙種次數(shù)的概率為:
3
5
×(1-
1
5
)+
2
5
(1-
1
5
-
1
5
)=
12
25
+
6
25
=
18
25

(Ⅱ)ξ表示依方案乙所需化驗(yàn)次數(shù),
∴ξ的期望為Eξ=2×0.6+3×0.4=2.4.
點(diǎn)評(píng):期望是概率論和數(shù)理統(tǒng)計(jì)的重要概念之一,是反映隨機(jī)變量取值分布的特征數(shù),學(xué)習(xí)期望將為今后學(xué)習(xí)概率統(tǒng)計(jì)知識(shí)做鋪墊.同時(shí),它在市場(chǎng)預(yù)測(cè),經(jīng)濟(jì)統(tǒng)計(jì),風(fēng)險(xiǎn)與決策等領(lǐng)域有著廣泛的應(yīng)用,為今后學(xué)習(xí)數(shù)學(xué)及相關(guān)學(xué)科產(chǎn)生深遠(yuǎn)的影響.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知5只動(dòng)物中有1只患有某種疾病,需要通過(guò)化驗(yàn)血液來(lái)確定患病的動(dòng)物.血液化驗(yàn)結(jié)果呈陽(yáng)性的即為患病動(dòng)物,呈陰性即沒(méi)患病.下面是兩種化驗(yàn)方案:
方案甲:逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止.
方案乙:先任取3只,將它們的血液混在一起化驗(yàn).若結(jié)果呈陽(yáng)性則表明患病動(dòng)物為這3只中的1只,然后再逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止;若結(jié)果呈陰性則在另外2只中任取1只化驗(yàn).
求依方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

(注意:在試題卷上作答無(wú)效)

已知5只動(dòng)物中有1只患有某種疾病,需要通過(guò)化驗(yàn)血液來(lái)確定患病的動(dòng)物.血液化驗(yàn)結(jié)果呈陽(yáng)性的即為患病動(dòng)物,呈陰性即沒(méi)患病.下面是兩種化驗(yàn)方案:

方案甲:逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止;

方案乙:先任取3只,將它們的血液混在一起化驗(yàn).若結(jié)果呈陽(yáng)性則表明患病動(dòng)物為這3只中的1只,然后再逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止;若結(jié)果呈陰性則在另外2只中任取1只化驗(yàn)。

求依方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知5只動(dòng)物中有1只患有某種疾病,需要通過(guò)化驗(yàn)血液來(lái)確定患病的動(dòng)物.血液化驗(yàn)結(jié)果呈陽(yáng)性的即為患病動(dòng)物,呈陰性的即沒(méi)患病.下面是兩種化驗(yàn)方案:

方案甲:逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止.

方案乙:先任取3只,將它們的血液混在一起化驗(yàn).若結(jié)果呈陽(yáng)性則表明患病動(dòng)物為這3只中的1只,然后再逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止;若結(jié)果呈陰性則在另外2只中任取1只化驗(yàn).

(1)求依方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)的概率;

(2) 表示依方案乙所需化驗(yàn)次數(shù),求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(全國(guó)Ⅰ卷文20)已知5只動(dòng)物中有1只患有某種疾病,需要通過(guò)化驗(yàn)血液來(lái)確定患病的動(dòng)物.血液化驗(yàn)結(jié)果呈陽(yáng)性的即為患病動(dòng)物,呈陰性即沒(méi)患病.下面是兩種化驗(yàn)方案:

方案甲:逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止.

方案乙:先任取3只,將它們的血液混在一起化驗(yàn).若結(jié)果呈陽(yáng)性則表明患病動(dòng)物為這3只中的1只,然后再逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止;若結(jié)果呈陰性則在另外2只中任取1只化驗(yàn).

求依方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案