【題目】已知,.

(1)若,求使得成立的的集合;

(2)當(dāng)時(shí),函數(shù)只有一個零點(diǎn),求的取值范圍.

【答案】;(.

【解析】試題分析:(1)由已知,根據(jù)向量數(shù)量積計(jì)算公式進(jìn)行運(yùn)算,再根據(jù)兩角和的正弦公式進(jìn)行化簡,可得到函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性進(jìn)行求解,從而問題可得解;(2)由(1)知函數(shù)的解析式,將問題轉(zhuǎn)化為函數(shù)軸只有一個交點(diǎn)時(shí),求參數(shù)的取值范圍,結(jié)合數(shù)形法,以及函數(shù)在給定區(qū)間上的值域,從而問題可得解.

試題解析:

因?yàn)?/span>,所以,故,

解得,

,所以,令,解得

即使得成立的的集合為

函數(shù)只有一個零點(diǎn),即方程只有一個根,即函數(shù)的圖像與直線上只有一個交點(diǎn)。

作出函數(shù)的圖像可知,

所以,或 ...

解得,或

的取值范圍為 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)=ex+mx2﹣m(m>0),當(dāng)x1+x2=1時(shí),不等式f(x1)+f(0)>f(x2)+f(1)恒成立,則實(shí)數(shù)x1的取值范圍是(
A.(﹣∞,0)
B.
C.
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,設(shè)橢圓 =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 右頂點(diǎn)為A,上頂點(diǎn)為B,離心率為e.橢圓上一點(diǎn)C滿足:C在x軸上方,且CF1⊥x軸.

(1)若OC∥AB,求e的值;
(2)連結(jié)CF2并延長交橢圓于另一點(diǎn)D若 ≤e≤ ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知銳角三角形ABC中,角A,B,C所對的邊分別為a,b,c若c﹣a=2acosB,則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 的左、右焦點(diǎn)分別為 ,點(diǎn) 在橢圓上, ,且 的面積為4.
(1)求橢圓的方程;
(2)點(diǎn) 是橢圓上任意一點(diǎn), 分別是橢圓的左、右頂點(diǎn),直線 與直線 分別交于 兩點(diǎn),試證:以 為直徑的圓交 軸于定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理過程是演繹推理的是( )
A.某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人數(shù)超過50人
B.兩條直線平行,同旁內(nèi)角互補(bǔ),如果∠A與∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180°
C.由平面三角形的性質(zhì),推測空間四邊形的性質(zhì)
D.在數(shù)列{an}中,a1=1,an (an1 )(n≥2),由此歸納出{an}的通項(xiàng)公

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,設(shè)橢圓 =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 右頂點(diǎn)為A,上頂點(diǎn)為B,離心率為e.橢圓上一點(diǎn)C滿足:C在x軸上方,且CF1⊥x軸.

(1)若OC∥AB,求e的值;
(2)連結(jié)CF2并延長交橢圓于另一點(diǎn)D若 ≤e≤ ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】美索不達(dá)米亞平原是人類文明的發(fā)祥地之一.美索不達(dá)米亞人善于計(jì)算,他們創(chuàng)造了優(yōu)良的計(jì)數(shù)系統(tǒng),其中開平方算法是最具有代表性的.程序框圖如圖所示,若輸入a,n,ξ的值分別為8,2,0.5,(每次運(yùn)算都精確到小數(shù)點(diǎn)后兩位)則輸出結(jié)果為(
A.2.81
B.2.82
C.2.83
D.2.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn+n=2an(n∈N*).

(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;

(2)若bn=an+2n+1,數(shù)列{bn}的前n項(xiàng)和為Tn..

查看答案和解析>>

同步練習(xí)冊答案