已知:ΔACB為等腰直角三角形,∠ACB=900延長BA至E,延長AB至F,∠ECF=1350  求證:ΔEAC∽ΔCBF
證明見解析
本試題主要是考查了平面幾何中相似三角形的證明的求解。利用已知中ΔACB為等腰直角三角形,∠ACB=900延長BA至E,延長AB至F,∠ECF=1350  ,結合相似三角形的判定定理得到結論。
證明:∵AB=AC∴∠ABC=∠ACB,
∴∠BCF=∠ACE,
∵∠ECF=135 
∴△CBF∽△EAC
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分) 如圖, 內接于⊙, 是⊙的直徑, 是過點的直線, 且.
  
(Ⅰ) 求證: 是⊙的切線;
(Ⅱ)如果弦于點, ,
, , 求.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,⊙的半徑OB垂直于直徑AC,為AO上一點,    的延長線交⊙于點N,過點N的切線交CA的延長線于點P.

(1)求證:;
(2)若⊙的半徑為,OA=,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,的外接圓的圓心為,, 則等于(  )
A.B.C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若直線與曲線為參數(shù),且有兩個不同的交點,則實數(shù)的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

、如圖,的高,外接圓的直徑,圓半徑為,,
的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,⊙O是邊長為2的等邊△ABC的內切圓,則⊙O的半徑為         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

.(選修4—1:幾何證明選講)
如圖,已知是⊙的直徑,是⊙的弦,的平分線交⊙,過點的延長線于點,于點.若,則的值為          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)選修4-1幾何證明選講
已知ΔABC中AB=AC,D為ΔABC外接圓劣弧上的點(不與點A、C重合),延長BD至E,延長交BC的延長線于F .

(I )求證:;
(II)求證:AB.AC.DF=AD.FC.FB.

查看答案和解析>>

同步練習冊答案