某市為了了解今年高中畢業(yè)生的身體素質(zhì)狀況,從本市某校高中畢業(yè)班中抽取一個班進(jìn)行實心球測試,成績在8米及以上的為合格.把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知第一小組為[5,6),從左到右前5個小組的頻率分別為0.06,0.1,0.14,0.28,0.3.第6小組的頻數(shù)是6.
(Ⅰ)求這次實心球測試成績合格的人數(shù);
(Ⅱ)經(jīng)過多次測試后,甲成績在8~10米之間,乙成績在9.5~10.5米之間,現(xiàn)甲、乙各投一次,求乙投得沒有甲遠(yuǎn)的概率.
分析:(I)第6小組的頻率為:1-(0.06+0.10+0.14+0.28+0.30)=0.12,此次測試總?cè)藬?shù)為
6
0.12
=50人,由此能求出這次實心球測試成績合格的人數(shù).
(II)設(shè)甲、乙各投擲一次的成績?yōu)閤,y米,由基本事件滿足的區(qū)域為
8≤x≤10
9.5≤y≤10.5
,“乙投得沒有甲遠(yuǎn)”滿足的區(qū)域為x≥y,由幾何概型能求出結(jié)果.
解答:解:( I)第6小組的頻率為1-(0.06+0.10+0.14+0.28+0.30)=0.12
∴此次測試總?cè)藬?shù)為
6
0.12
=50
(人).…(2分)
∴第4、5、6組成績均合格,人數(shù)為(0.28+0.30+0.12)×50=35(人)…(4分)

 (Ⅱ)設(shè)甲、乙各投擲一次的成績分別為x、y米,
則基本事件滿足的區(qū)域為
8≤x≤10
9.5≤y≤10.5

設(shè)事件A為“乙投得沒有甲遠(yuǎn)”滿足的區(qū)域為x≥y如圖所示.
P(A)=
1
2
×
1
2
×
1
2
1×2
=
1
16
…11分
∴乙投得沒有甲遠(yuǎn)的概率為 P(A)=
1
16
…12分
點(diǎn)評:本題考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是歷年高考的必考題型.解題時要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某市為了了解今年高中畢業(yè)生的體能狀況,從本市某校高中畢業(yè)班中抽取一個班進(jìn)行鉛球測試,成績在8.0米(精確到0.1米)以上的為合格.把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30.第6小組的頻數(shù)是7.
(1)求這次鉛球測試成績合格的人數(shù);
(2)若由直方圖來估計這組數(shù)據(jù)的中位數(shù),指出它在第幾組內(nèi),并說明理由;
(3)若參加此次測試的學(xué)生中,有9人的成績?yōu)閮?yōu)秀,現(xiàn)在要從成績優(yōu)秀的學(xué)生中,隨機(jī)選出2人參加“畢業(yè)運(yùn)動會”,已知a、b的成績均為優(yōu)秀,求兩人至少有1人入選的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某市為了了解今年高中畢業(yè)生的體能狀況,從本市某校高中畢業(yè)班中抽取一個班進(jìn)行鉛球測試,成績在8.0米(精確到0.1米)以上的為合格.把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30.第6小組的頻數(shù)是7.
(1)求這次鉛球測試成績合格的人數(shù);
(2)用此次測試結(jié)果估計全市畢業(yè)生的情況.若從今年的高中畢業(yè)生中隨機(jī)抽取兩名,記X表示兩人中成績不合格的人數(shù),求X的分布列及數(shù)學(xué)期望;
(3)經(jīng)過多次測試后,甲成績在8~10米之間,乙成績在9.5~10.5米之間,現(xiàn)甲、乙各投擲一次,求甲比乙投擲遠(yuǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市為了了解今年高中畢業(yè)生的體能狀況,從本市某校高中畢業(yè)班中抽取一個班進(jìn)行鉛球測試,成績在8.0米以上的為合格.把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫出頻率分布直方圖的 一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30.第6小組的頻數(shù)是7.
(I)求這次鉛球測試成績合格的人數(shù);
(II)若由直方圖來估計這組數(shù)據(jù)的中位數(shù),指出它在第幾組內(nèi),并說明理由;
(III)現(xiàn)在要從第6小組的學(xué)生中,隨機(jī)選出2人參加“畢業(yè)運(yùn)動會”,已知該組a、b的成績均很優(yōu)秀,求兩人至少有1人入選的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆福建省高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

(本題滿分12分)某市為了了解今年高中畢業(yè)生的體能狀況,從本市某校高中畢業(yè)班中抽取一個班進(jìn)行鉛球測試,成績在8.0米(精確到0.1)以上的為合格.把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30.第6小組的頻數(shù)是7.

( I ) 求這次鉛球測試成績合格的人數(shù);

(II) 用此次測試結(jié)果估計全市畢業(yè)生的情況.若從今年的高中畢業(yè)生中隨機(jī)抽取兩名,記表示兩人中成績不合格的人數(shù),求的數(shù)學(xué)期望和方差.

 

查看答案和解析>>

同步練習(xí)冊答案