【題目】如圖是一個(gè)半圓形湖面景點(diǎn)的平面示意圖.已知為直徑,且km,為圓心,為圓周上靠近的一點(diǎn),為圓周上靠近的一點(diǎn),且∥.現(xiàn)在準(zhǔn)備從經(jīng)過(guò)到建造一條觀光路線,其中到是圓弧,到是線段.設(shè),觀光路線總長(zhǎng)為.
(1)求關(guān)于的函數(shù)解析式,并指出該函數(shù)的定義域;
(2)求觀光路線總長(zhǎng)的最大值.
【答案】(1),(2)
【解析】
試題分析:(1)觀光路線總長(zhǎng)為+,根據(jù)弧長(zhǎng)公式有,根據(jù)等腰三角形OCD有,所以,根據(jù)角實(shí)際意義可知:(2)利用導(dǎo)數(shù)求函數(shù)最值:先求導(dǎo)數(shù),得定義區(qū)間上零點(diǎn):。列表
x | (0,) | (,) | |
+ | 0 | - | |
f (x) | 遞增 | 極大值 | 遞減 |
分析可知函數(shù)在處取得極大值,這個(gè)極大值就是最大值,即.
試題解析:(1)由題意知,, 2分
, 5分
因?yàn)?/span>為圓周上靠近的一點(diǎn),為圓周上靠近的一點(diǎn),且,
所以
所以,7分
(2)記,則, 9分
令,得, 11分
列表
x | (0,) | (,) | |
+ | 0 | - | |
f (x) | 遞增 | 極大值 |
所以函數(shù)在處取得極大值,這個(gè)極大值就是最大值, 13分
即,
答:觀光路線總長(zhǎng)的最大值為千米. 14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對(duì)幾何學(xué)、力學(xué)等學(xué)科作出過(guò)卓越貢獻(xiàn).為調(diào)查中學(xué)生對(duì)這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機(jī)抽取了某市的100名高中生,請(qǐng)他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項(xiàng)的稱為“比較了解”,少于三項(xiàng)的稱為“不太了解”他們的調(diào)查結(jié)果如下:
(1)完成如下列聯(lián)表,并判斷是否有99%的把握認(rèn)為,了解阿基米德與選擇文理科有關(guān)?
(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.
(ⅰ)求抽取的文科生和理科生的人數(shù);
(ⅱ)從10人的樣本中隨機(jī)抽取3人,用表示這3人中文科生的人數(shù),求的分布列和數(shù)學(xué)期望.參考數(shù)據(jù):
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:
(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計(jì)A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50 kg | 箱產(chǎn)量≥50 kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對(duì)這兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)專著《九章算術(shù)》中有一個(gè)“兩鼠穿墻題”,其內(nèi)容為:“今有垣厚五尺,兩鼠對(duì)穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.問(wèn)何日相逢?各穿幾何?”如圖的程序框圖源于這個(gè)題目,執(zhí)行該程序框圖,若輸入x=20,則輸出的結(jié)果為( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (φ為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是圓心為(2,),半徑為1的圓.
(1)求曲線C1的普通方程和C2的直角坐標(biāo)方程;
(2)設(shè)M為曲線C1上的點(diǎn),N為曲線C2上的點(diǎn),求|MN|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 在點(diǎn) 處的切線方程是 .
(1)求 , 的值及函數(shù) 的最大值;
(2)若實(shí)數(shù) , 滿足 ( )
1)證明: ;
2)若 ,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與直線交于不同兩點(diǎn)分別過(guò)點(diǎn)、點(diǎn)作拋物線的切線,所得的兩條切線相交于點(diǎn).
(Ⅰ)求證為定值:
(Ⅱ)求的面積的最小值及此時(shí)的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記為數(shù)列的前項(xiàng)和.“任意正整數(shù),均有”是“為遞增數(shù)列”的
A. 充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】德國(guó)數(shù)學(xué)家科拉茨年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘加(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到.對(duì)于科拉茨猜想,目前誰(shuí)也不能證明,也不能否定.現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)(首項(xiàng))按照上述規(guī)則施行變換后的第項(xiàng)為(注:可以多次出現(xiàn)),則的所有不同值的個(gè)數(shù)為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com