【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設(shè)計下面的實驗來估計的值:先請名同學(xué),每人隨機寫下一個都小于的正實數(shù)對,再統(tǒng)計兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對的個數(shù);最后再根據(jù)統(tǒng)計數(shù)m來估計的值.假如統(tǒng)計結(jié)果是那么可以估計______.

【答案】(或?qū)懗?/span>3.2

【解析】

由試驗結(jié)果知之間的均勻隨機數(shù),對應(yīng)區(qū)域的面積為,兩個數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對,滿足都小,,面積為,由幾何概型概率計算公式,得出所取的點在圓內(nèi)的概率是圓的面積比正方形的面積,二者相等,即可求得答案.

由試驗結(jié)果知之間的均勻隨機數(shù),對應(yīng)區(qū)域的面積為,兩個數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對,滿足都小,,面積為

幾何概型概率計算公式,得出所取的點在圓內(nèi)的概率是圓的面積比正方形的面積,二者相等,

統(tǒng)計兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對的個數(shù)

解題

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)討論的單調(diào)性;

2)若有兩個極值點,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個商場同時出售一款西門子冰箱,其中甲商場位于老城區(qū)中心,乙商場位于高新區(qū).為了調(diào)查購買者的年齡與購買冰箱的商場選擇是否具有相關(guān)性,研究人員隨機抽取了1000名購買此款冰箱的用戶作調(diào)研,所得結(jié)果如表所示:

50歲以上

50歲以下

選擇甲商場

400

250

選擇乙商場

100

250

1)判斷是否有的把握認(rèn)為購買者的年齡與購買冰箱的商場選擇具有相關(guān)性;

2)由于乙商場的銷售情況未達(dá)到預(yù)期標(biāo)準(zhǔn),商場決定給冰箱的購買者開展返利活動具體方案如下:當(dāng)天賣出的前60臺(含60臺)冰箱,每臺商家返利200元,賣出60臺以上,超出60臺的部分,每臺返利50.現(xiàn)將返利活動開展后15天內(nèi)商場冰箱的銷售情況統(tǒng)計如圖所示:與此同時,老張得知甲商場也在開展返利活動,其日返利額的平均值為11000元,若老張將選擇返利較高的商場購買冰箱,請問老張應(yīng)當(dāng)去哪個商場購買冰箱

附:,其中.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多有創(chuàng)意的求法,如著名的普豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設(shè)計下面的實驗來估計的值:先請120名同學(xué)每人隨機寫下一個x,y都小于1的正實數(shù)對,再統(tǒng)計其中xy能與1構(gòu)成鈍角三角形三邊的數(shù)對的個數(shù)m,最后根據(jù)統(tǒng)計個數(shù)m估計的值.如果統(tǒng)計結(jié)果是,那么可以估計的值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某游樂場過山車軌道在同一豎直鋼架平面內(nèi),如圖所示,矩形的長130米,寬120米,圓弧形軌道所在圓的圓心為0,圓O,,分別相切于點AD,CT的中點.現(xiàn)欲設(shè)計過山車軌道,軌道由五段連接而成:出發(fā)點N在線段上(不含端點,游客從點Q處乘升降電梯至點N),軌道第一段與圓O相切于點M,再沿著圓孤軌道到達(dá)最高點A,然后在點A處沿垂直軌道急速下降至點O處,接著沿直線軌道滑行至地面點G處(設(shè)計要求M,OG三點共線),最后通過制動裝置減速沿水平軌道滑行到達(dá)終點R,軌道總長度為l.

1)試將l表示為的函數(shù),并寫出的取值范圍;

2)求l最小時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有極值,且導(dǎo)函數(shù)的極值點是的零點,給出命題:,則存在,使得;所有極值之和一定小于0;,且是曲線的一條切線,則的取值范圍是.則以上命題正確序號是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)yfx)=。

(1)求yfx)的最大值;

(2)設(shè)實數(shù)a>0,求函數(shù)Fx)=afx)在[a,2a]上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】世界排球比賽一般實行五局三勝制,在2019年第13屆世界女排俱樂部錦標(biāo)賽(俗稱世俱杯)中,中國女排和某國女排相遇,根據(jù)歷年數(shù)據(jù)統(tǒng)計可知,在中國女排和該國女排的比賽中,每場比賽中國女排獲勝的概率為,該國女排獲勝的概率為,現(xiàn)中國女排在先勝一局的情況下獲勝的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠商調(diào)查甲乙兩種不同型號汽車在10個不同地區(qū)賣場的銷售量(單位:臺),并根據(jù)這10個賣場的銷售情況,得到如圖所示的莖葉圖,為了鼓勵賣場,在同型號汽車的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號的“星級賣場”.

(Ⅰ)求在這10個賣場中,甲型號汽車的“星級賣場”的個數(shù);

(Ⅱ)若在這10個賣場中,乙型號汽車銷售量的平均數(shù)為26.7,求的概率;

(Ⅲ)若,記乙型號汽車銷售量的方差為,根據(jù)莖葉圖推斷為何值時,達(dá)到最小值(只寫出結(jié)論).

注:方差,其中,,…,的平均數(shù).

查看答案和解析>>

同步練習(xí)冊答案