精英家教網 > 高中數學 > 題目詳情
已知命題:平面上一矩形ABCD的對角線AC與邊AB和AD所成角分別為α、β,則cos2α+cos2β=1.若把它推廣到空間長方體中,試寫出相應的命題形式:   
【答案】分析:本題考查的知識點是類比推理,由在長方形中,設一條對角線與其一頂點出發(fā)的兩條邊所成的角分別是α,β,則有cos2α+cos2β=1,我們根據平面性質可以類比推斷出空間性質,我們易得答案.
解答:解:我們將平面中的兩維性質,類比推斷到空間中的三維性質.
由在長方形中,設一條對角線與其一頂點出發(fā)的兩條邊所成的角分別是α,β,
則有cos2α+cos2β=1,
我們根據平面性質可以類比推斷出空間性質,
即在長方體中,一條對角線與從某一頂點出發(fā)的三條棱所成的角分別是α,β,γ,
則有cos2α+cos2β+cos2γ=1.
故選Cos2α+cos2β+cos2γ=1
點評:本題考查的知識點是類比推理,在由平面圖形的性質向空間物體的性質進行類比時,常用的思路有:由平面圖形中點的性質類比推理出空間里的線的性質,由平面圖形中線的性質類比推理出空間中面的性質,由平面圖形中面的性質類比推理出空間中體的性質,或是將平面中的兩維性質,類比推斷到空間中的三維性質.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

2、已知命題:平面上一矩形ABCD的對角線AC與邊AB和AD所成角分別為α、β,則cos2α+cos2β=1.若把它推廣到空間長方體中,試寫出相應的命題形式:
cos2α+cos2β+cos2γ=1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題:平面上一矩形ABCD的對角線AC與邊AB、AD所成的角分別為α、β(如圖1),則cos2α+cos2β=1.用類比的方法,把它推廣到空間長方體中,試寫出相應的一個真命題并證明.
精英家教網

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題:平面上一矩形ABCD的對角線AC與邊AB和AD所成角分別為α﹑β,則cos2α+cos2β=1.若把它推廣到空間長方體ABCD-A1B1C1D1中,對角線A1C與平面A1B、A1C1、A1D所成的角分別為α、β、γ,則
sin2α+sin2β+sin2γ=1
sin2α+sin2β+sin2γ=1

查看答案和解析>>

科目:高中數學 來源:2010年福建省四地六校高二下學期第二次聯(lián)考數學(理科)試題 題型:解答題

(本小題滿分13分)
已知命題:平面上一矩形ABCD的對角線AC與邊AB、AD所成的角分別為、(如圖1),則.用類比的方法,把它推廣到空間長方體中,試寫出相應的一個真命題并證明。

查看答案和解析>>

科目:高中數學 來源:2010年福建省四地六校高二下學期第二次聯(lián)考數學(理科)試題 題型:解答題

(本小題滿分13分)

已知命題:平面上一矩形ABCD的對角線AC與邊AB、AD所成的角分別為、(如圖1),則.用類比的方法,把它推廣到空間長方體中,試寫出相應的一個真命題并證明。

 

查看答案和解析>>

同步練習冊答案