【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號(hào)t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關(guān)于t的線性回歸方程;

(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

【答案】(1);(2)在2007至2013年該地區(qū)農(nóng)村居民家庭人均純收入在逐年增加,平均每年增加千元;元.

【解析】試題本題第(1)問(wèn),由給出的公式求出,從而求出回歸直線方程;對(duì)第(2)問(wèn),由第(1)問(wèn)求出的回歸直線方程進(jìn)行預(yù)測(cè),令,可得的近似值.

試題解析:(1)由題意知,,所以=

所以==,所以線性回歸方程為

(2)(1)中的線性回歸方程可知,,所以在2007至2013年該地區(qū)農(nóng)村居民家庭人均純收入在逐年增加,平均每年增加千元.

得:,故預(yù)測(cè)該地區(qū)在2015年農(nóng)村居民家庭人均純收入為元。

【易錯(cuò)點(diǎn)】本題的易錯(cuò)點(diǎn)是第(1)問(wèn)計(jì)算錯(cuò)誤,第(2)問(wèn)在2007至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,不知道如何回答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線.

(1)若直線經(jīng)過(guò)拋物線的焦點(diǎn),求拋物線的準(zhǔn)線方程;

(2)若斜率為-1的直線經(jīng)過(guò)拋物線的焦點(diǎn),且與拋物線交于,兩點(diǎn),當(dāng)時(shí),求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn),曲線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是雙曲線上一點(diǎn), 分別是雙曲線的左、右頂點(diǎn),直線的斜率之積為.

(1)求雙曲線的離心率;

(2)過(guò)雙曲線的右焦點(diǎn)且斜率為的直線交雙曲線于兩點(diǎn), 為坐標(biāo)原點(diǎn), 為雙曲線上一點(diǎn),滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】即將于年夏季畢業(yè)的某大學(xué)生準(zhǔn)備到貴州非私營(yíng)單位求職,為了了解工資待遇情況,他在貴州省統(tǒng)計(jì)局的官網(wǎng)上,查詢到年到年非私營(yíng)單位在崗職工的年平均工資近似值(單位:萬(wàn)元),如下表:

年份

序號(hào)

年平均工資

(1)請(qǐng)根據(jù)上表的數(shù)據(jù),利用線性回歸模型擬合思想,求關(guān)于的線性回歸方程,的計(jì)算結(jié)果根據(jù)四舍五入精確到小數(shù)點(diǎn)后第二位);

(2)如果畢業(yè)生對(duì)年平均工資的期望值為8.5萬(wàn)元,請(qǐng)利用(1)的結(jié)論,預(yù)測(cè)年的非私營(yíng)單位在崗職工的年平均工資(單位:萬(wàn)元。計(jì)算結(jié)果根據(jù)四舍五入精確到小數(shù)點(diǎn)后第二位),并判斷年平均工資能否達(dá)到他的期望.

參考數(shù)據(jù):,,

附:對(duì)于一組具有線性相關(guān)的數(shù)據(jù):,,,

其回歸直線的斜率和截距的最小二乘法估計(jì)分別為

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓為橢圓的左、右焦點(diǎn),點(diǎn)在直線上且不在軸上,直線與橢圓的交點(diǎn)分別為,為坐標(biāo)原點(diǎn).

設(shè)直線的斜率為,證明:

問(wèn)直線上是否存在點(diǎn),使得直線的斜率滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓x2y2x6y3=0與直線x2y3=0的兩個(gè)交點(diǎn)為P、Q,求以PQ為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)有下列四個(gè)命題:

:若,則;

:若,則;

:“”是“為奇函數(shù)”的充要條件;

:“等比數(shù)列中,”是“等比數(shù)列是遞減數(shù)列”的充要條件.

其中,真命題的是  

A. ,B. C. ,D. ,

查看答案和解析>>

同步練習(xí)冊(cè)答案