11.下面的偽代碼輸出的結(jié)果S為(  )
I←1
While I<8
I←I+2
S←2I+3
End while
Print S.
A.17B.19C.21D.23

分析 由已知中的程序代碼,可得程序的功能是利用循環(huán)計(jì)算變量S的值,模擬程序的運(yùn)行過(guò)程,即可得到答案.

解答 解:由已知中的程序代碼,模擬程序的運(yùn)行過(guò)程可得:
當(dāng)I=1時(shí),S=2×3+3=9,I增大為3;
當(dāng)I=3時(shí),S=2×5+3=13,I增大為5;
當(dāng)I=5時(shí),S=2×7+3=17,I增大為7;
當(dāng)I=7時(shí),S=2×9+3=21,I增大為9;
當(dāng)I=9時(shí),不滿足繼續(xù)循環(huán)的條件,
故輸出結(jié)果為S=21.
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是偽代碼,循環(huán)結(jié)構(gòu),模擬程序運(yùn)行結(jié)果,是解答此類問(wèn)題常用方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖1,已知矩形ABCD中,點(diǎn)E是邊BC上的點(diǎn),DE與AC相交于點(diǎn)H,且CE=1,AB=$\sqrt{3}$,BC=3,現(xiàn)將△ACD沿AC折起,如圖2,點(diǎn)D的位置記為D′,此時(shí)ED′=$\frac{\sqrt{10}}{2}$
(1)求證:D′H⊥AE
(2)求三棱錐B-AED′的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)y=ax-4+2(a>0,a≠1)的圖象過(guò)定點(diǎn)P,P為角α終邊上一點(diǎn),則cos2α+sin2α+1=$\frac{56}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{\frac{1}{x},x≥1}\\{{x^3},x<1}\end{array}}$,若關(guān)于x的方程f(x)=k(x+1)有兩個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是(0,$\frac{1}{2}$)∪($\frac{27}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=x2-alnx(a∈R).
(I)若f(x)在[1,3]上是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(II)記g(x)=f(x)+(2+a)lnx-2(b-1)x,并設(shè)x1,x2(x1<x2)是函數(shù)g(x)的兩個(gè)極值點(diǎn),若b≥1+$\frac{3}{2}\sqrt{2}$,求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.?x∈(0,+∞),不等式ax>logax(a>0,a≠1)恒成立,則a的取值范圍是$[{e}^{\frac{1}{e}},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列四組函數(shù)中,表示為同一函數(shù)的是( 。
A.f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1B.y=x0與g(x)=$\frac{1}{{x}^{0}}$
C.f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$D.f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)=$\frac{x}{x-1}$(x≥3)的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=x+$\frac{4}{x-3}$,x∈(3,+∞)的最小值為(  )
A.3B.4C.6D.7

查看答案和解析>>

同步練習(xí)冊(cè)答案