【題目】在極坐標(biāo)系中,曲線C:ρ=2sinθ,A、B為曲線C的兩點,以極點為原點,極軸為x軸非負半軸的直角坐標(biāo)中,曲線E:是參數(shù))上一點P,則∠APB的最大值為 (   )

A. B. C. D.

【答案】B

【解析】

將曲線C和曲線E的方程化為直角坐標(biāo)方程,當(dāng)∠APB取最大值時,PAPB與圓C相切,且PC最短即PCl,利用直角三角形的邊角關(guān)系即可得出.

由曲線Cρ2sinθ,化為ρ22ρsinθ

x2+y22y,配方為x2+y121

曲線E,消去參數(shù)t可得普通方程為3x+4y+60

當(dāng)∠APB取最大值時,PAPB與圓C相切,且PC最短即PCl,

圓心C到直線l的距離為

此時在RtPAC中,,故

則∠APB的最大值

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)的極值;

(2)若函數(shù)在[1,3]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是( )

A. ”是“”成立的充分不必要條件

B. 命題,則

C. 為了了解800名學(xué)生對學(xué)校某項教改試驗的意見,用系統(tǒng)抽樣的方法從中抽取一個容量為40的樣本,則分組的組距為40

D. 已知回歸直線的斜率的估計值為1.23,樣本點的中心為,則回歸直線方程為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列命題:

①回歸直線恒過樣本點的中心,且至少過一個樣本點;

②兩個變量相關(guān)性越強,則相關(guān)系數(shù)就越接近于

③對分類變量,的觀測值越小,“有關(guān)系”的把握程度越大;

④兩個模型中殘差平方和越小的模型擬合的效果越好.則正確命題的個數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為鼓勵人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經(jīng)過地鐵站的數(shù)量實施分段優(yōu)惠政策,不超過站的地鐵票價如下表:

乘坐站數(shù)

票價(元)

現(xiàn)有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過站.甲、乙乘坐不超過站的概率分別為, ;甲、乙乘坐超過站的概率分別為, .

(1)求甲、乙兩人付費相同的概率;

(2)設(shè)甲、乙兩人所付費用之和為隨機變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究性學(xué)習(xí)小組對晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系進行研究,下面是3月1日至5日每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù)的詳細記錄:

(1)根據(jù)3月2日至3月4日的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

日期

3月1日

3月2日

3月3日

3月4日

3月5日

溫差

10

11

13

12

8

發(fā)芽數(shù)

23

25

30

26

16

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均小于2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,,是等比數(shù)列,,,,.

1)求數(shù)列的通項公式;

2)若,求當(dāng)是偶數(shù)時,數(shù)列的前項和

3)若,是否存在實數(shù)使得不等式對任意的,恒成立?若存在,求出所有滿足條件的實數(shù),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司結(jié)合公司的實際情況針對調(diào)休安排展開問卷調(diào)查,提出了,,三種放假方案,調(diào)查結(jié)果如下:

支持方案

支持方案

支持方案

35歲以下

20

40

80

35歲以上(含35歲)

10

10

40

1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從支持方案的人中抽取了6人,求的值;

2)在支持方案的人中,用分層抽樣的方法抽取5人看作一個總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]已知函數(shù)f(x)=log ( |x + 1| + |x- 1|- a ).

(I)當(dāng)a=3時,求函數(shù)f(x)的定義域;

()若不等式fx的解集為R,求實數(shù)a的最大值.

查看答案和解析>>

同步練習(xí)冊答案