【題目】已知為坐標原點,拋物線與直線交于點兩點,且.

(1)求拋物線的方程;

(2)線段的中點為,過點且斜率為的直線交拋物線兩點,若直線,分別與直線交于兩點,當時,求斜率的值.

【答案】(1)(2)

【解析】

1)根據(jù)數(shù)量積求出參數(shù)的值即可得到所求方程.(2)求出點的坐標為,然后再求出點,的坐標,進而得到直線,的方程,于是得到的坐標,最后根據(jù)可求出斜率的值.

(1)由消去整理得,

∵直線與拋物線交于兩點,

,解得(舍去).

,,則,

,

,解得,符合題意.

∴拋物線方程為

(2)由(1)得,

,

,

,中點

設過點斜率為的直線方程為,即,

消去整理得

其中,故

,

,,

直線的方程為,令,得,

,

同理得,

,

解得,滿足題意.

∴斜率的值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線,過拋物線焦點且與軸垂直的直線與拋物線相交于、兩點,且的周長為.

(1)求拋物線的方程;

(2)若過焦點且斜率為1的直線與拋物線相交于、兩點,過點、分別作拋物線的切線、,切線相交于點,求:的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】祖暅(公元前5~6世紀)是我國齊梁時代的數(shù)學家,是祖沖之的兒子,他提出了一條原原理:“冪勢既同,則積不容異.”這里的“冪”指水平截面的面積,“勢”指高。這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等。設由橢圓 所圍成的平面圖形繞 軸旋轉一周后,得一橄欖狀的幾何體(稱為橢球體),課本中介紹了應用祖暅原理求球體體積公式的做法,請類比此法,求出橢球體體積,其體積等于( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】前些年有些地方由于受到提高的影響,部分企業(yè)只重視經濟效益而沒有樹立環(huán)保意識,把大量的污染物排放到空中與地下,嚴重影響了人們的正常生活,為此政府進行強制整治,對不合格企業(yè)進行關閉、整頓,另一方面進行大量的綠化來凈化和吸附污染物.通過幾年的整治,環(huán)境明顯得到好轉,針對政府這一行為,老百姓大大點贊.

(1)某機構隨機訪問50名居民,這50名居民對政府的評分(滿分100分)如下表:

分數(shù)

頻數(shù)

2

3

11

14

11

9

請在答題卡上作出居民對政府的評分頻率分布直方圖:

(2)當?shù)丨h(huán)保部門隨機抽測了2018年11月的空氣質量指數(shù),其數(shù)據(jù)如下表:

空氣質量指數(shù)(

0-50

50-100

100-150

150-200

天數(shù)

2

18

8

2

用空氣質量指數(shù)的平均值作為該月空氣質量指數(shù)級別,求出該月空氣質量指數(shù)級別為第幾級?(同一組數(shù)據(jù)用該組數(shù)據(jù)的區(qū)間中點值作代表,將頻率視為概率)(相關知識參見附表)

(3)空氣受到污染,呼吸系統(tǒng)等疾病患者最易感染,根據(jù)歷史經驗,凡遇到空氣輕度污染,小李每天會服用有關藥品,花費50元,遇到中度污染每天服藥的費用達到100元.環(huán)境整治前的2015年11月份小李因受到空氣污染患呼吸系統(tǒng)等疾病花費了5000元,試估計2018年11月份(參考(2)中表格數(shù)據(jù))小李比以前少花了多少錢的醫(yī)藥費?

附:

空氣質量指數(shù)(

0-50

50-100

100-150

150-200

200-300

空氣質量指數(shù)級別

空氣質量指數(shù)

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】歷史上數(shù)列的發(fā)展,折射出許多有價值的數(shù)學思想方法,對時代的進步起了重要的作用,比如意大利數(shù)學家列昂納多·斐波那契以兔子繁殖為例,引入“兔子數(shù)列”:即1,1,2,3,5,8,13,21,34,55,89,144,233,….即,,此數(shù)列在現(xiàn)代物理、準晶體結構及化學等領域有著廣泛的應用,若此數(shù)列被4整除后的余數(shù)構成一個新的數(shù)列,又記數(shù)列滿足,,則的值為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地統(tǒng)計局就該地居民的月收入調查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在[1000,1500))

(1)求居民月收入在[2000,2500)的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)在月收入為[2500,3000),[3000,3500),[3500,4000]的三組居民中,采用分層抽樣方法抽出90人作進一步分析,則月收入在[3000,3500)的這段應抽多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知拋物線Cx2=4y的焦點為F,直線l與拋物線C交于A,B兩點,延長AF交拋物線C于點D,若AB的中點縱坐標為|AB|-1,則當∠AFB最大時,|AD|=(  )

A. 4B. 8C. 16D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知棱柱的底面是菱形,且ABCD,F為棱的中點,M為線段的中點.

1)求證:ABCD;

2)判斷直線MF與平面的位置關系,并證明你的結論;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我市為增強市民的環(huán)境保護意識,面向全市征召義務宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機抽取100名按年齡(單位:歲)分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場的宣傳活動,應從第3,4,5組各抽取多少名志愿者?

(2)請根據(jù)頻率分布直方圖,估計這100名志愿者樣本的平均數(shù);

(3)在(1)的條件下,該市決定在這6名志愿者中隨機抽取2名志愿者介紹宣傳經驗,求第4組至少有一名志愿者被抽中的概率.(參考數(shù)據(jù):

查看答案和解析>>

同步練習冊答案