利用定義判斷函數(shù)求y=
3
x-2
在區(qū)間[3,6]上的單調(diào)性,并求該函數(shù)在[3,6]上的最大值和最小值.
考點(diǎn):函數(shù)單調(diào)性的判斷與證明,函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)單調(diào)性的定義,在區(qū)間[3,6]上任取兩個變量x1,x2,且x1<x2,通過作差判斷y1,y2的關(guān)系即可得出該函數(shù)在[3,6]上的單調(diào)性,而根據(jù)單調(diào)性即可求出該函數(shù)在[3,6]上的最大值,最小值.
解答: 解:設(shè)x1,x2∈[3,6],且x1<x2,則:
y1-y2=
3
x1-2
-
3
x2-2
=
3(x2-x1)
(x1-2)(x2-2)
;
由x1,x2∈[3,6],x1<x2得,x2-x1>0,(x1-2)(x2-2)>0;
∴y1>y2;
∴y=
3
x-2
在區(qū)間[3,6]上單調(diào)遞減;
∴該函數(shù)在[3,6]上的最大值為
3
3-2
=3
,最小值為
3
6-2
=
3
4
點(diǎn)評:考查函數(shù)單調(diào)性的定義,以及根據(jù)函數(shù)單調(diào)性的定義判斷函數(shù)單調(diào)性的過程,以及根據(jù)函數(shù)單調(diào)性求函數(shù)的最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2(x2+3),x<0
-tanx,0≤x<
π
2
,則f(f(
π
4
))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈N|x-3≤0},B={x∈Z|x2+x-2≤0},則A∪B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,DEF為BC、AC、AB上的點(diǎn),
AF
=
2
3
AB
,
AE
=
3
4
AC
,
AD
=λ(
AB
|
AB
|•cosB
+
AC
|
AC
|•cosC
),
DE
AD
=
DE
CD
,
DF
=μ(
BD
•sinB
|
BD
|
+
AD
•cosB
|
AB
|
),則
|
BC
|
|
EF
|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在2014-2015賽季的CBA(中國職業(yè)籃球)常規(guī)賽中,甲、乙兩隊(duì)要進(jìn)行三場比賽,在三場比賽中,甲隊(duì)兩個主場一個客場,乙隊(duì)一個主場兩個客場,按以往多年的比賽統(tǒng)計(jì),兩隊(duì)主客場的勝負(fù)概率如下表,按照比賽規(guī)定,每場勝隊(duì)得2分,負(fù)隊(duì)得1分(比賽結(jié)果只有勝負(fù)兩種可能,如果出現(xiàn)平局時(shí)就加時(shí),直至分出勝負(fù)為止),設(shè)甲、乙兩隊(duì)最后所得的總分分別為ξ、η,且ξ+η=9.
主客場甲隊(duì)勝乙隊(duì)勝
甲對主場 
2
3
 
1
3
乙隊(duì)主場 
1
3
 
2
3
(1)甲隊(duì)得5分的概率;
(2)求ξ的分布列,并用統(tǒng)計(jì)學(xué)知識說明兩個隊(duì)的實(shí)力情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A,B是橢圓
x2
4
+y2
=1上兩個不同的點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若直線AB的斜率為-1,且經(jīng)過橢圓的左焦點(diǎn),求|AB|;
(2)若直線AB在y軸上的截距為4,且OA,OB的斜率之和等于2,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是各項(xiàng)均為正數(shù)的等比數(shù)列,a1=b1=1且a2=b1+1,a3=b3+1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,求滿足Sn-
an+1
n
>100的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,AB⊥平面PAD,AB∥CD,△PAD是邊長為
2
的正三角形,E是PB的中點(diǎn),F(xiàn)是CD上的點(diǎn),AB=2DF=1.
(Ⅰ)證明:EF⊥平面PAB;
(Ⅱ)若FC=2,求點(diǎn)C到平面EBF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若
S5
S10
=
1
3
,則
S5
S20
=( 。
A、
1
9
B、
1
10
C、
1
8
D、
1
3

查看答案和解析>>

同步練習(xí)冊答案