(本小題15分)已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)遞增區(qū)間;
(2)是否存在,使得對(duì)任意的,都有恒成立.若存在,求出的取值范圍; 若不存在,請(qǐng)說(shuō)明理由.
(1) 。(2)存在,
解析試題分析:(1)
當(dāng)時(shí),, ∴在上單增, …………………2分
當(dāng)>4時(shí),, ∴的遞增區(qū)間為…….6.分
(2)假設(shè)存在,使得命題成立,此時(shí).
∵, ∴.
則在和遞減,在遞增.
∴在[2,3]上單減,又在[2,3]單減.
∴. …………………10分
因此,對(duì)恒成立.
即, 亦即恒成立.
∴ ∴. 又 故的范圍為...15分
考點(diǎn):本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、導(dǎo)數(shù)在最大值、最小值問(wèn)題中的應(yīng)用及恒成立的問(wèn)題。
點(diǎn)評(píng):利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)區(qū)間,關(guān)鍵是解不等式,因此要研究含參不等式的解法,應(yīng)注意對(duì)參數(shù)的討論;研究是否存在問(wèn)題,通常先假設(shè)存在,轉(zhuǎn)化為封閉性問(wèn)題,對(duì)于恒成立問(wèn)題,一般應(yīng)利用到函數(shù)的最值,而最值的確定又通常利用導(dǎo)數(shù)的方法解決.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)
(1)求時(shí)函數(shù)的解析式
(2)用定義證明函數(shù)在上是單調(diào)遞增
(3)寫(xiě)出函數(shù)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分) 已知方程(為實(shí)數(shù))有兩個(gè)不相等的實(shí)數(shù)根,分別求:
(Ⅰ)若方程的根為一正一負(fù),則求實(shí)數(shù)的取值范圍;
(Ⅱ)若方程的兩根都在內(nèi),則求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知函數(shù),是的一個(gè)極值點(diǎn).
(1)求的單調(diào)遞增區(qū)間;
(2)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)P:二次函數(shù)在區(qū)間上存在零點(diǎn);Q:函數(shù)在內(nèi)沒(méi)有極值點(diǎn).若“P或Q”為真命題,“P且Q”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)某炮兵陣地位于地面A處,兩觀察所分別位于地面點(diǎn)C和D處, 已知CD=6000m,∠ACD=45°,∠ADC=75°, 目標(biāo)出現(xiàn)于地面點(diǎn)B處時(shí),測(cè)得∠BCD=30°,∠BDC=15°(如圖),求炮兵陣地到目標(biāo)的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知函數(shù),
(1) 若存在實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍;
(2) 設(shè),且在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/53/c/1x6q94.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù)
⑴求函數(shù)的解析式;
⑵判斷并證明函數(shù)的單調(diào)性;
⑶若對(duì)于任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(16分)已知函數(shù)
(1)求證:函數(shù)在上為單調(diào)增函數(shù);
(2)設(shè),求的值域;
(3)對(duì)于(2)中函數(shù),若關(guān)于的方程有三個(gè)不同的實(shí)數(shù)解,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com